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Preliminary note

Mladen KoZul, Zeljana Nikolié, Ante Mihanovié

Numerical modelling of in-plane creep behaviour of reinforced and prestressed
concrete structures

The numerical model for the analysis of in-plane creep behaviour of concrete, based
on the correction of the modulus of elasticity in principal direction, for the current state
of principal stresses, is presented. The elastic modulus correction is dependent on the
current creep coefficient and the current elastic modulus as obtained from the uniaxial
diagram of concrete in compression. The model's accuracy was analyzed on appropriate
laboratory and numerical examples of reinforced and prestressed concrete structures,
using a computer program developed for that purpose.
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. Prethodno priopcenje
Mladen Kozul, Zeljana Nikoli¢, Ante Mihanovic

Numericki model puzanja armiranih i prednapetih betonskih konstrukcija
u ravnini

Prikazan je numericki model za analizu deformacija puzanja betona u ravnini, utemeljen na
korekciji modula elasti¢nosti u glavnim pravcima, za trenutno stanje glavnih naprezanja.
Korekcija modula elasti¢nosti ovisi o trenutnom koeficijentu puzanja i trenutnom modulu
elasticnosti dobivenom iz jednoosnog radnog dijagrama betona u tlaku. Na temelju izradenog
racunalnog programa izvrSena je analiza to¢nosti modela na odgovarajucim primjerima
laboratorijski i numericki ispitivanih armiranih i prednapetih betonskih konstrukcija.

Klju€ne rijeci:

modul elasti¢nosti, puzanje, skupljanje, armirani i prednapeti beton, numericki model

Vorherige Mitteilung
Mladen KoZul, Zeljana Nikoli¢, Ante Mihanovié

Numerisches Model des Kriechverhaltens von Stahl- und
Spannbetonkonstruktionen in der Ebene

In der vorliegenden Arbeit ist ein numerisches Modell fiir die Analyse der Kriechverformung
von Beton in der Ebene dargestellt, das sich auf der Korrektur des Elastizitatsmoduls fir die
den Hauptspannungen im aktuellen Spannungszustand entsprechenden Richtungen basiert.
Die Berichtigung des Elastizitatsmoduls erfolgt in Abhdngigkeit von den momentanen Werten
des Kriechkoeffizienten und des auf dem Arbeitsdiagramm des Betons unter einachsiger
Druckbeanspruchung beruhendem Elastizitatsmoduls. Mit Hilfe eines entwickelten
Computerprogramms ist eine Analyse der Genauigkeit des Modells fiir entsprechende
Beispiele experimentell und numerisch untersuchter Stahl- und Spannbetonkonstruktionen
vorgenommen worden.

Schlisselworter:

Elastizitatsmodul, Kriechen, Schwinden, Stahl- und Spannbeton, numerisches Modell
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1. Introduction

The analysis of time-dependent deformations of concrete,
such as creep and shrinkage, necessarily requires
monitoring of concrete deformations over time, and
the study of influence these deformations exert on the
reinforcement and prestressing steel. This influence is
primarily reflected in the increase of deformation and
stress redistribution, and in concrete cracking. Because of
the problem of durability and, in some cases, of stability
of concrete structures, a realistic estimation of these
deformations is very important [1-5].

The creep of concrete belongs to viscous deformations
that develop over time and are mainly described through
empirical expressions, the results of which should
correspond to the actual measured creep deformation of
concrete. It occurs in the compression zone, and also in
the tensile zone of concrete. Since the tensile strength
of concrete is significantly lower than the compressive
strength, the tensile creep is not so significant. It is known
that the final or permanent deformation can be two or
more times greater than the current elastic deformation
of reinforced and prestressed concrete structures. This
is important not only for the in-service behaviour of
structures, but also for the redistribution of stresses and
unforeseen occurrence of cracks in concrete. The analysis of
reinforced and prestressed concrete structures, especially
ones with larger spans and heights, is nowadays not
considered complete without inclusion of time-dependent
deformations of concrete.

There are many models of concrete creep, but most of them
are based on empirical expressions that define certain
parameters influencing creep deformation of concrete [1-4].
Such models are calibrated to the experimental analysis of
this problem. Since experimental models are generally simple,
mapping results on a complex real structure is not always
appropriate. Because of obvious complexity of the problem in
practice, we tend to use simpler models that are sufficiently
accurate and simple for engineering applications.

In this paper, the existing software package PRECON [6-8]
was used as a background for analysing creep deformations
of concrete. The software can be used to analyse reinforced
and prestressed concrete structures in case of the in-plane
state of stress / strain and axially symmetric state for
the quasistatic loading. This model includes all essential
nonlinear effects of the concrete, reinforcement and
prestressing tendons. Based on this model, an appropriate
program for analysing time-dependent deformations
of concrete was developed [9]. The shrinkage model for
concrete is taken from ENV 206 [10], while a new numerical
procedure, incorporated into the existing model, is developed
for the analysis of creep deformations. This new numerical
procedure is based on the adjustment of the stiffness matrix
of concrete at each Gauss point over time, while the choice

is left open for an appropriate creep coefficient and uniaxial
concrete compression relationship [9].

2. Nonlinear model for post tensioned concrete
structures

The model of nonlinear behaviour of post tensioned plane
concrete structures is taken from [6]. An ideal relationship
between the concrete, reinforcement and prestressing
tendons is implied. Concrete structures are discredited
using standard 2D 8-node isoparimetric finite elements.
Reinforcement and prestressed tendons are modeled with
1D 3-nodal isoparametric finite elements that can be set
independently of the 2D mesh of finite elements.

The model provides description of linear and curved tendons.
To ensure continuity, the end node of the 1D tendon element
must be located at the intersection with the edges of two-
dimensional elements of concrete, while the coordinates
of the middle node are determined with an iterative
interpolation procedure. A brief description of the material
model is given below, while a more detailed description can
be found in [6-S].

2.1 Material models

2.1.1. Concrete

The theory of elasto-viscoplasticity is used to describe the
behaviour of concrete in compression [11]. Yield criterion
is defined through the first two invariants of stress tensor.
After the stress reaches the surface flow, the region of plastic
deformation follows, and it is characterized by the laws of
yielding and hardening. The associated law on concrete flow
in compression is adopted [11-14]. The crushing or collapse
of concrete is defined by limit strains. Because of the lack of
experimental data related to limit deformations of concrete,
the deformation condition of crushing is formulated similarly
with the Von Misses vyield criterion, where stresses are
replaced with deformations. The behaviour of concrete in
tension is linearly elastic until the tensile strength is reached,
when the tensile softening model is adopted [6, 9, 11] with
linear decrease of stress perpendicular to the direction of
crack, and the process of loading and unloading. The smeared
crack model is used to describe the opening and closing of
cracks.

Shear stiffness of cracked concrete is modeled through
reduction of the shear modulus [6, 11, 14].

2.1.2. Reinforcement and prestressing steel

The reinforcement and prestressing steel assume axial
stresses only, and are therefore modeled with the one-
dimensional elasto-viscoplastic model [6-8], which includes a
possible hardening and elastic unloading.
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Figure 1. Possible cable positions [7]

2.2. Numerical modelling of reinforcement and
prestressed tendons

The analysis of prestressed and reinforced concrete
structures requires definition of the behaviour of concrete,
rebars, tendons, and their joint action. Prestressed tendons
and traditional reinforcement are modelled with 1D 3-nodal
isoparametric finite elements, which are incorporated into 2D
concrete finite elements [6-8]. The choice of finite element
mesh of concrete structure is independent of the geometry
and position of the reinforcement and tendons. The position
of tendons is specified by nodes whose coordinates are
defined in the global coordinate system. The model provides a
description of linear and curved tendons (Figure 1).

The prestressing force, which occurs in the cable, is transferred
to the nodes of 2D concrete elements in form of equivalent
nodal forces [6-8].

3. Numerical model of concrete creep

3.1. Introduction

In this section, a brief description is given of a numerical model
based on correction of the current elastic modulus of concrete,
in the principal stress directions, and also as a function of
the creep coefficient of concrete. The creep function, and the
creep coefficient of concrete, was taken from EC2[10], and are
defined by the following equations:

1 ¢(t:to)

+
Ec (to) E(:28

¢(tvto):¢oﬁc (t_to) (2)

J(tty) = (1)

where:

J(t, t) - creep function in time ¢

@t t) - creep coefficient

E(t) - tangent modulus of elasticity of concrete in time £,

E g - tangent modulus of elasticity of concrete at 28
days

¢o = ¢RHﬁ(fgm)ﬂ( to)

- basic creep coefficient

0.30
po(t—ty)=|—"o | - coefficient that describes development
B +(t-ty) . .
of creep deformation over time.
If stresses in concrete do not significantly vary, the expression
for the effective modulus of elasticity can be used to determine
creep deformation:

E _ Ecm(to)
14 g(tty)

3)

The current elasticity modulus of concrete, f, is determined
through the working diagram of concrete, for the corresponding
principal stress values at some point in time. For a given load
level, the principal stress in all Gauss points of construction is
known at the initial moment of time ¢,. Using these stresses
and adopted working diagram of concrete, the current secant
elastic modules can be determined for each main direction
(Figure 2). Then, the current elasticity module is corrected via
an appropriate concrete creep coefficient, using the expression
(3) for the effective modulus of elasticity of concrete. In this
way, a local orthotropy of concrete is introduced at the level
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Figure 2. Correction of the elastic modulus of concrete
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of the corresponding areas of each integration point, which
is then reflected on the material matrix, and finally on the
finite element stiffness matrix of concrete. In this way, the
character of principal stresses is taken into account.

3.2. Correction of elastic modulus of concrete

In the formulation of this model, the current modulus of
elasticity of concrete ) directions of principal compressive
stress of each integration point. Therefore, the Hogenstad's
working diagram of concrete in compression [15], is adopted,
as shown in Figure 3.

simplification
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Figure 3. Working diagram according to Hogenstad [15]

Using the relationship between the current principal stress
in a given direction and the corresponding current strain
obtained from the working diagram of concrete, the current
secant modulus of elasticity of concrete in that principal
direction can be obtained.

Figure 4. Principal stresses in Gauss point (orthotropy)

If it is assumed that the trends and directions of principal
stresses o, and o, for the final external load are as shown in
Figure 4.,and if current deformations &,and &, are determined
from the working diagram of concrete, then the current
modulus of elasticity of concrete can be determined for each

Gauss point, and for each principal direction, according to the
following expressions:

_ailt) _0a(by).
Eillo)= 51(t0)‘ Fallo)= gz(to)y
_‘71(t1) _02(t1).

B e (%)
_02 (t,)
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Principal stresses o, ,(t), s, (t))... o, (t) at any time point ¢,
are obtained from the numerical analysis.

e
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Figure 5. Current secant modulus of elasticity in principal directions

The current modulus of elasticity of concrete in the direction
of main compressive stresses shall be adjusted to enable
numeric simulation of the creep deformation of concrete.
In this way, a fictitious orthotropic material is introduced
at each Gauss point where at least one principal stress
is compressive. No correction of modulus is made in the
direction of the principal tensile stress, and so the modulus is
equal to the initial elastic modulus in these directions, if there
are no cracks in the concrete. The corrections are made once
the current modulus of elasticity of concrete is established
according to expression (4). For each principal direction, the
expression (3) can be written as follows:

- £ -£(0)8(0) 5)

I
where E¥(t) is the corrected modulus of elasticity of concrete
at some point in time, for some principal direction, and E{t)
is the current modulus of elasticity of concrete for the same
direction. The time function B(t):m depends on the creep
coefficient,and it is the same for each principal direction within
a given time. This assumption is reasonable, although there is
a choice of different time functions for specific stresses.

The corrected modulus of elasticity of concrete is then entered
into the material matrix, which assumes the following form
for the plane stress state and the time point ¢;
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Ef‘(t,-) V12E§(ti) 0
c c
v EN(t)  Ex(t
Dort(ti)= 2102(/) 2(5() 0 (6)
0 0 G,

The above orthotropic matrix should be transformed from the
material to global axes, and orthotropic material matrix in the
global coordinates has the form:

D=TD, T (7)
where Tis the transformation matrix.

This matrix is used to form the finite element stiffness matrix,
and it is valid only in the area that belongs to a particular
Gauss point where both principal stresses are compressive, or
one principal stress is compressive while the other is tensile.
In case both principal stresses in the Gauss point are tensile,
then the isotropic material matrix should be used in this
region, or the matrix of cracked concrete if there are cracks in
the concrete. In this case, the modulus of elasticity of concrete
is equal to the initial modulus of elasticity, or it is reduced
according to the adopted model for tensile softening [6, 7, 11].
The Poisson’s ratios for the orthotropic case can be written as
follows [16]:

€
Vi2 = -=, Vor=—— (8)
&1

The material matrix (6) is a function of five material
parameters, but only four of them are independent. This
conclusion is based on the fact that the material matrix has to
be symmetric, which means that the following equality holds:

Vo1 _ V12

E, E, )

Several expressions for shear modulus G of orthotropic
material have been proposed. Here, we have used the
expression which takes the mean value of £ and £, and also
v, iv,[16]

E,+E,
1
4l:1+§(v1 +v2)}

The finite element stiffness matrix of concrete is of standard
form:

Gy = (10)

k- [B7DB AV, (11)
VE

where, for the corresponding orthotropic areas of individual
integration points, the material matrix D is given by expression
(7).

After formation of the stiffness matrix, the standard
procedure is used to form equilibrium equations and solve
them by incremental-iterative procedure using the finite
element method.

4. Numerical procedure

The nonlinear procedure for the analysis of stresses and
deformations is divided into four phases so as to enable an
accurate numerical description of the real behaviour of plane
reinforced and prestressed concrete structures.

Phase |

In this phase the structure is calculated for the load that
exists prior to the prestressing of tendons (self-weight, and
part of the dead load). The structure consists of the concrete
and traditional reinforcement.

Phase Il

In this phase tendons are prestressed separately, and the
prestressing force can be applied at once or incrementally, so
that the gradual prestressing process can be simulated. Upon
tensioning, the tendon is not treated as a structural element, i.e.
only its geometry is used in order to obtain the initial influence in
form of the equivalent prestressing load. When the next tendons
are prestressed, the previously prestressed tendons function as
a traditional reinforcement with the given initial stress.

Phase Il

After all tendons have been prestressed, the structure
assumes an extra load (remaining dead load and live load).
The stiffness of the structure is now engaged, with concrete,
reinforcement and all prestressed tendons. The load can now
be applied incrementally until failure.

Phase IV

When all loads are applied and nonlinear structural analysis
is completed, the numerical procedure continues with the
fourth phase in which the deformation analysis of creep and
shrinkage of concrete is performed. Shrinkage deformations
areincluded in the model EC2[10], while the creep deformation
are analysed using the previously described model. In this way,
itis possible to determine, at any given time, the deformations
and their impact on concrete, rebars, prestressed tendons,
and the structure as a whole.

5. Numerical examples

Example 1.

In this example, the analysis of the reinforced concrete beam type C3
is performed, as experimentally tested in [17]. The beam geometry
and loading are shown in Figure 6. The experiment monitored
displacements in the middle of the span, and the deformations
state at designated measurement points over two years. During
this period, the beam was kept at constant relative humidity of 50 %,
and at constant ambient temperature of 21°C. Material parameters
for the short-term and long-term load are given in Tables 1 and
2. The beam is discretized with 18 eight-node isoparametric 2D
elements, while the height is divided into two elements.
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Figure 6. Geometry and beam load
Table 1. Long-term parameters Table 2. Short-term material parameters
Average element radius hy = 44.0 mm Concrete Rainforcement
. . Modulus of elasticity Modulus of elasticity
=50%
Relative humidity RH =50 E, = 25000.0 MPa E. = 20000.0 MPa
Mean compressive strength at 28 days f_=24133MPa Poisson’s coefficient Yield point
L=0.166 f,=413.7 MPa
Age of concrete at the time of loading t,=30dana Limit compressive strength Hardening parameter
f.=24.133 MPa H=0
. . Limit tensile strength Limit strength
Beam . displacements acFordlng to . Corley a.nd Sozen [17], f.=2.0MPa f.=620.6 MPa
and displacements obtained by this numerical model, are
shown in Figure 7. A good correspondence of results was Crushing deformation Relative limit deformation
registered even at high levels of compressive stress. Cracks €, =0.0035 €, =0.01
appear already at the load factor 0.3, while the entire tensile Tensile stiffness parameters
zone of the beam is cracked at full load. Displacement €,=05
values, particularly in case of beams with small percentage €, =0.0012

of reinforcement, are significantly influenced by the tensile
strength of concrete. The tensile softening model describes
the contribution of concrete in fractured areas in taking on the
tensile stresses.

Beam deformation along its height in Gauss points of
the element whose coordinate x = 0.7577 m is closest to
measurement points with the coordinate x = 0.7874 m, is
shown in Figure 8. The deformation at the top and bottom
edges of the beam can be obtained by extrapolation of

Shear stiffness parameter
€., =0.0012

measurement results. It is evident that deformations of
the cross-section are not entirely straight, which can be
explained by the relatively coarse finite element mesh, and
by the effect of tensile creep in the region of tensile softening
of concrete.

16
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0,020 Beam deformations for measurement lines at the intersection

0018 = = nearest to the middle of the beam are shown in Figure
EWG % 9. Because of the simple finite element mesh, and hence
oo 7 the position of Gauss points along the beam height, the
E Z':z / comparison of results is presented for measurement lines 1
g . —5—Num. solution ] and 5 only, because they are closest to the position of Gauss
2 q008 — Experiment(17] points along the beam height.
B co04 Figure 10. shows beam displacements due to self-weight,

0,002 external load, creep, and shrinkage.

0,000

0 50 100 160 200 250 300 360 400 450 BO0O 650 600 660 700
Time [days]
Figure 7. Middle of beam displacements over time

-0,003
-0,0025
61663 Al —e—Num. sol. [t=0 days] /
& : —&—Num. sol. [t=21 days] /
O -0,0015 - < Num. sol. [t=110 days] =
b —=—Num. sol. [t=700 days] /z/ _—4
E -0,001 T|—e—Experiment [t=0 days] /
E ~0,0005 H i [t=21 days] = - =8
8 . L —o—Experiment [t=110 days] 2/4/ /://
—&—Experiment [t=700 days] /
0,005 = —"
0,001 =
0,0015
0,002
0,011623 0,04337 0,06623 0,09837
Figure 10. Beam displacements [m]x1000
Beam height (G. P. koordinates) [m]
Figure 8. Axial deformations along the beam height Example 2.
Asimplereinforced concretebeam,experimentallyinvestigated
-0,003 by Jaccoud and Favre [18], is analyzed In this example. Five
00025 W identical beams are examined at different load levels. This
-0,002 // beam is also analyzed by the numerical creep model described
—<o—Experiment-line 1 . . . . . .
& 00015 —— in paper [19]. In this model, the beam is discretized with 12
g oo 7 o Experiment-line SE— finite shell elements. For the concrete tension, a simple linear
S 00005 —=—Num.sol.-line1 [ viscoelastic model is used, until appearance of cracks in the
@
o 0 Numsol-ines | concrete. It can be concluded from geometry and load that the
0.0005 aim is to evaluate the influence of creep of concrete at high
0.001 — &g —%——5 =——p levels of compressive stress, where the strong influence of
0,0015

nonlinearity of creep can be observed.

Figure 11. shows the geometry and load of beam, and in Table
3. material parameters are given. Beam is discretized with 24
eight-node finite elements.

0 100 200 300 400 500 600 700
Time [davs]

Figure 9. Beam deformations at measuring lines over time

P P 206
/ 206
/ [ ]
g v £
©
() () () () () o
T T i T
AN - 5012
— 5012 , 0,75m )
q q
, 105m L 10m , 105m ,
1 1 1 1

Figure 11. Geometry and beam load
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Table 3. Material parameters

Concrete Rainforcement
f =28.8MN/m? ~ ,
¢ =00022 fv =480.0 MN/m

E, = 29300.0 MN/m?

- 2
£ '=1.80 MN/m2 E. =185000.0 MN/m

v=0.15 g,=0.01

Results obtained by experimental testing and numerical
modelling are presented in Figure 12 for three levels of load
P 03.15 kN, P =6.29 kN and P = 9.44 kN. A mid span beam
displacement is monitored over time. It can be observed that
this model provides very good results with respect to beam
geometry due to its low height and a small number of finite
elements over the height. The accuracy of results is certainly
influenced by tensile creep, and the non-linearity of creep at
high compressive stress levels.

0,014

—— num. sol. /9/ P=3,15 kN
—=— work /18/ P=3,15 kN
—— exp. /17/ P=315kN
num. sol. /9/ P=6,29 kN

T

S

0,012

—s%— work /18/ P=6,29 kN
—e— exp. /17/ P=629 kN
—— num. sol. /9/ P=9,44 kN
— work /18/ P=944 kN
exp. 117/ P=944s kN

0,01

0,008

/

0 T
0 50

P S—

0,006

Displacements [m]

————
—
-

N\

X

=

100 150 200 250
Time [days]

Figure 12. Middle of beam displacements over time

I se'f weight
I External load
I Creep and shrinkage

Example 3.

The bridge in Capljina is analysed in this example [9]. The
bridge is a frame structure with the spans measuring 40 +84
+40 m, and with hinge connections to adjacent supports. The
bridge intrados is parabolic, and the height ranges from 192
cm to 404 cm. The thickness of the upper slab is constant
throughout the length of the bridge, and it is 20 cm at the
cantilevered section, and 26 cm in the middle of the box girder.
The lower slab is of variable thickness. The greatest thickness
of this slab, amounting to 50 cm, is at intermediate support
positions. This thickness decreases linearly down to 18 cm in
the middle of the large span, and at end support positions.
The side walls of the box are also of variable thickness. The
greatest thickness of these walls is 62 cm at intermediate
support positions, while the smallest thickness of 24 cm
has been measured at the end support positions, and in
the middle of the large span. The bridge superstructure is
made of concrete MB45. The prestressing system BBR CONA
COMPACT is used, with tendons 12 ® 0.5', and with the quality
of 1660/1860 MPa. The initial prestressing force of each
tendon is 1250 kN.

A half of the bridge's longitudinal section is shown in Figure
14. Typical cross-sections are given in Figure 15. The cross-
section 10 is located on the right side of the left support of
the great span. It contains the group B and group A tendons.
Group B tendons are located in the upper slab of the box, while
group A tendons are located in box walls. The cross-section
19 s located in the middle of the great span. The bridge is not
symmetrical because of different height of the corresponding
section, and so the model of the entire bridge had to be
prepared. The position of the group of tendons above the
central pier of the bridge is shown in Figure 16, while the
replacement cross-section, used in the numerical analysis, is
shown in Figure 17.

The bridge structure is discretized with 996 8-node 2D finite
elements, and the total of 3333 nodes. Prestressing tendons
were discretised by projecting all tendons in the vertical
plane. In this way, the group B tendons are presented with
the total of two tendons, one above the middle of the left-
side support, and the other in the middle of the right-side
support. In addition, the group C tendons are represented
with the total of three tendons, which are located in the
lower box slab of each span. The group A tendons are shown
with the total of sixteen tendons, eight above both central
supports. In this way, the total of 21 tendons was obtained,
which discretization follows the discretization of basic
structural elements of concrete.

LONGITUDINAL SECTION (HALF OF THE BRIDGE)

x
3 ® ® ® ® ® @ ® ©[F © @ @ @ @ @ @) @ @©

Figure 14. Longitudinal section for a half of the bridge

EL
]
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The load on the bridge, reduced to the plane
~ CROSSf;mONw @ through longitudinal axis of the bridge,
=T fgiﬁj M{/] 1999998 &0 999999 40 & A‘mfz TTE am.ounts to 42 kN / m. It contains the
‘ ”—ﬁiﬁiﬁw—wl ERaSEs ] _ OEEEAE ;20 Hiin o weight of water insulation, curbs, fence,
Z"nj;i%t T ﬁ%g‘g i B installations, and asphalt.
E"j? %ﬁ%@ Due to the size of the model, the traditional
B 45 reinforcement RA400/500 was taken only in
& 8 the lowerand the upper box slab, the lower and
the upper zone, and therefore 332 concrete
L ‘ elements include reinforcing elements.

s L Displacements of the central vertex of the
: q arch were measured geodetically on four
— %i S — — occgsions. First time during the bridge load

1 1 testing, and then after 80, 140, and 360 days.

CROSS-SECTION 19 ; - . :

~ ® o= Given the characteristics of this numerical
1148 I model and actual structure, it can be said that

: 24 ] 350 ; 350 1 2 : its accuracy depends on the following facts:
&« . . - & by _ ) - simplified geometry of the model as

T | 63 24 101 | 384 L0t pdea,  tea related to actual construction
! s ! - simplification in terms of the position
—— o eree— of tendons and their projection into
| s “@ Heeg l the corresponding resultant tendon,
and in terms of modelling time for each
Figure 15. Typical cross-section prestressing tendon

GROUP “A” TENDONS - LONGITUDINAL SECTION THROUGH THE WEB (LEFT PIER)

i @ iz

@ ® ® i J_u <L ! ‘ | ;

:_L___\_‘ ,,,,, \iﬁiﬁ?
GROUP ‘A" TENDONS - LONGITUDINAL SECTION THROUGH THE WEB (RIGHT PIER)

Figure 16. Tendon position above intermediate supports - impact of the reinforcement on the
deformability of structure was not taken

1150 Group B tendons

L

+ into account

ST 3 | - impact of volume and cross-sectional
area,and the humidity of the environment
on the value of creep and shrinkage

deformations
- impact of the time of first loading,
because the structure of the bridge was
A loaded with the remaining dead load
until after the end of the last segment
- | / | in the middle of the large span of the
-~ bridge was finished, which differs
+ 635 significantly from the numerical model.

Group A tendons

ceeeeaed)

variable

variable

Reinforcement RA400/500

va[iablf

-

The segments, which were previously
Figure 17. Replacement cross section
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Figure 18. Bridge displacements over time

erected, already suffered a certain amount of creep and
shrinkage deformations.

Displacements of the entire bridge after 360 days are shown in
Figure 18. The displacement measured in the middle of the bridge,
and displacements obtained by this numerical model without
conventional reinforcement and with such reinforcement, are
shown in Figure 19. The difference between the measured and
actual displacement after one year amounts to about 8 mm in
case without conventional reinforcement, and to no more than
4 mm in case with the traditional reinforcement in the upper and
lower box slab. This points to a considerable influence of classical
reinforcement on the deformability of prestressed structures, which
obviously takes a part in the reduction of stresses and deformations.

o
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o
o
B
o

—&—measuring

—5—num. res. (with reinforcment)

Displacements [m]
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Figure 19. Middle of bridge displacements over time
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Figure 20. Middle of bridge finite element mesh
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The finite element mesh in the middle of the bridge, with
specified integration points of the concrete element 504
and the tendon element contained in concrete element 499,
is shown in Figure 20. The change in concrete stress o,, in
the element 504 and the integration point 4, closest to the
middle of the bridge, is shown in Figure 21. It is evident that
concrete deformations decrease over time. The change in the
tendon force in element 499, in the integration point 3, closest
to the middle of the bridge, as obtained by numerical model,
is shown in Figure 22. A very small increase in that force was
registered. In fact, the increase amounted to about 1% at 250
days.

0,00 + +—t—+ + +——t—t—+—+
50 70 920 110 130 150 170 190 210 230 250
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Figure 21. Stress x-x in G. P. 2. of element 504

changes in cable force in G. T. element 499
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Figure 22. Cable force change

Despite the previously mentioned impact on the accuracy
of the numerical model, it can be said that it provides good
and expected results, considering the phenomenology of
the problem it describes.

The adding of traditional longitudinal reinforcement in
the upper and lower box slab has led to a decrease in

20
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displacement, both instant and time dependent, so that
the difference between the measured and numerically
obtained displacements amounts to less than 10 %
after one year. The adding of the remaining longitudinal
reinforcement in the box walls, and of transverse
reinforcement, would have further reduced this difference
in displacement.

6. Conclusions

In this paper, the problem of time-dependent deformations of
concrete is analysed, namely the creep and shrinkage, starting from
the phenomenology of the problem and its impact on the reinforced
concrete and prestressed concrete structures. A new numerical
model for in-plane analysis of creep deformation of concrete is
presented, based on the correction of its elastic modulus in the main
directions, for the current state of principal stress.
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