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Construction cost estimation of reinforced and prestressed concrete bridges 
using machine learning

Seven state-of-the-art machine learning techniques for estimation of construction 
costs of reinforced-concrete and prestressed concrete bridges are investigated in this 
paper, including artificial neural networks (ANN) and ensembles of ANNs, regression 
tree ensembles (random forests, boosted and bagged regression trees), support 
vector regression (SVR) method, and Gaussian process regression (GPR). A database 
of construction costs and design characteristics for 181 reinforced-concrete and 
prestressed-concrete bridges is created for model training and evaluation. 
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Procjena troškova izgradnje AB i prednapetih betonskih mostova primjenom 
strojnog učenja

U ovom radu istraženo je sedam najnovijih postupaka strojnog učenja za procjenu troškova 
izgradnje armiranobetonskih i prednapetih betonskih mostova, uključujući umjetne 
neuronske mreže (ANN) i ansamble ANN, ansamble regresijskih stabala (eng. random 
forests, boosted and bagged regresijska stabla), metodu potpornih vektora za regresiju 
(SVR) i Gausov regresijski proces (GPR). Stvorena je i baza podataka o troškovima izgradnje 
i projektnim karakteristikama za 181 armiranobetonski i prednapeti betonski most za 
treniranje i ocjenu modela.
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Schätzung der Baukosten für Stahlbeton- und Spannbetonbrücken durch 
maschinelles Lernen

In dieser Arbeit werden sieben kürzlich durchgeführte maschinelle Lernverfahren 
zur Schätzung der Kosten für den Bau von Stahlbeton- und Spannbetonbrücken 
untersucht, darunter künstliche neuronale Netze (ANN) und ANN-Ensembles, regressive 
Baumensembles (Random Forests, Bagging und Boosting bei Regressionsbäumen), 
die Methode der Support-Vektor-Maschine für Regression (SVM) und der Gaußsche 
Regressionsprozess (GPR). Außerdem wurde eine Datenbank zu Baukosten und 
Planungsmerkmalen für 181 Stahlbeton- und Spannbetonbrücken für die Modellschulung 
und -bewertung erstellt.
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1. Introduction

There are currently more than two million bridges in operation 
worldwide, and their number is constantly increasing [1]. 
According to the American Road and Transportation Builders 
Association (ARTBA), the total investment costs of bridges 
in the USA were estimated at US$ 27 billion in 2014 [2]. In 
the European Union, 20.4 billion euros are planned for the 
construction of Trans-European Networks (TENS) within the 
transport sector (Connecting Europe Facility) for the 2014-2020 
period [3]. This trend will certainly continue in the oncoming 
years, hence the estimation of construction costs, which are 
the most significant part of total investment costs, is of utmost 
importance [4]. Predicting construction costs is one of the 
most important preliminary steps in any construction project, 
since cost prediction is crucial to avoid construction delays and 
ensure successful project completion [5]. The main problem 
in estimation of transport infrastructure project costs is 
significant deviation between the estimated costs and the real, 
actual construction costs, due to intentional underestimation in 
the initial project phases, when the costs are evaluated in order 
to decide whether the transport infrastructure should be built. 
Based on the analysis of 258 transport infrastructure projects 
worth $90 billion (U.S.), it was found that in the vast majority 
of projects actual costs were significantly higher than initially 
estimated, e.g. 34 % higher on an average for bridges and 
tunnels [6]. This underestimation is obviously not an error, it is 
prone to subjectivity, and may potentially introduce biases in the 
decision making process [6]. Therefore, being able to objectively 
forecast these costs is highly desirable. The estimation of 
construction costs in transport infrastructure is a complex 
process influenced by a variety of factors, uncertainty, and 
imprecision. Methods based on machine learning have shown 
promising results, enabling automation of the construction 
costs estimation process, and eliminating the biases introduced 
by human factor. Hegazy and Ayed designed an artificial 
neural network (ANN) model for the assessment of highway 
construction costs [7]. Backpropagation, simplex optimization 
and genetic algorithm (GA) were used for network training. 
The network was trained using a set of eighteen highway 
projects constructed in Newfoundland, Canada. Marcous et al. 
used ANN with backpropagation learning algorithm to predict 
the volume of concrete and the weight of prestressing steel 
in bridge superstructure [8]. A set of twenty-two prestressed 
concrete bridges over the Nile in Egypt was used for network 
training. Marinelli et al. used the feed-forward ANN model to 
predict the quantities of superstructure material (concrete, 
prestressed steel, and reinforcing steel) using the project data 
from 68 highway bridges constructed in Greece [9]. Mostafa 
used multiple regression analysis to estimate the costs of 54 
bridges and 72 culverts [10]. Using the multiple regression 
analysis, Hollar et al. assessed the costs of preliminary 
engineering of bridges, determined as a percentage of 
construction costs [11]. The dataset consists of bridge projects 

in North Carolina, USA, between 2001 and 2009. Cheng and Wu 
applied support vector machines (SVM) to predict construction 
costs using the set of twenty-nine construction projects as 
training cases, with an average prediction error of less than 
10 % [12]. Kim and Kim studied preliminary cost estimations 
using case-based reasoning (CBR) and GA [13]. Fragkakis et al. 
presented a prediction model for bridge foundation costs that 
predicted material quantities for various types of foundations, 
and estimated the total foundation costs using the backward 
stepwise regression [14]. Cirilovic et al. studied prediction 
models based on multiple regression analysis and ANNs for 
the unit costs of road reconstruction works, using a dataset 
of 200 contracts from 14 countries in Europe and Central Asia 
signed between 2000 and 2010 [15]. Pesko et al. conducted 
a similar research on the estimation of traffic infrastructure 
reconstruction costs in urban areas using ANNs [16]. Elfaki 
et al. reviewed methods for estimating construction costs 
including machine learning, rule-based systems, evolutionary 
systems, agent-based systems, and hybrid systems [5]. Chou 
et al. studied models based on multiple regression analysis, CBR 
and ANNs, to predict bid prices for bridge construction projects 
in Taiwan [17]. The best prediction was obtained using ANN 
model, with MAPE - used as performance criterion - amounting 
to 13.09 %.
It can be concluded from previous research and studies that 
researchers have used cost estimation models, the advantage 
of which being that a wider professional community is familiar 
with such models. The disadvantage is that most researchers 
use either linear regression models based on the assumption 
of linearity, which makes the whole estimation process biased, 
or neural network models that are significantly more complex 
to interpret (black box models) and require a more extensive 
database, or use hybrid models which are even more complicated.
This paper offers a comprehensive comparative analysis of 
seven state-of-the-art machine learning techniques for the 
estimation of construction costs of RC and PC bridges. Some of 
the proposed models, such as GPR, have not been, to the best 
of our knowledge, previously used for estimating construction 
costs of transport infrastructure projects.

2. Methodology

State-of-the-art machine learning techniques for estimating 
construction costs of RC and PC bridges, including ANNs and 
ensembles of ANNs, regression tree ensembles, support vector 
regression, and Gaussian process regression, are briefly outlined 
in this section, and details of their implementation are given.

2.1.  Multilayer perceptron artificial neural network 
(MLP- ANN) 

The multilayer perceptron (Figure 1) is a feed-forward neural 
network that consists of at least three layers: input layer, hidden 
layer and output layer.
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Each layer is composed of one or more processing units 
called neurons, where each neuron in one layer is connected 
to each neuron of the next layer. Multiple neuron layers 
with nonlinear transfer functions allow the network to 
learn nonlinear relationships between input and output 
vectors [18]. MLP with one hidden layer with bipolar sigmoid 
activation function and an output layer with linear activation 
function can approximate arbitrary multidimensional function 
for a given dataset, given sufficient number of neurons in the 
hidden layer [19].

Figure 1. Multilayer perceptron artificial neural network

The number of neurons in the hidden layer can be determined 
experimentally for the given dataset, with the upper limit 
calculated by:

 (1)

 (2)

where Ni represents the number of inputs in the neural network, 
and Ns represents the number of instances used for training. It is 
suggested to accept the lower value of the number of neurons 
in the hidden layer given by (1) and (2) [20, 21].
Neural network ensembles can be used to improve 
generalization of ANN, where many neural networks are used 
together to predict the unseen data. The components that form 
an ensemble are denoted as base models, or submodels, and 
each submodel is allowed to have different number of neurons 
in the hidden layer. MLP neural networks, with early stopping of 
training to avoid overfitting ,are used as submodels in an ANN 
ensemble.

2.2. Regression tree ensembles

Linear regression represents a global model, where a single 
formula describes the relations between the inputs and 
the outputs of the model over the entire data space. It is 
very hard to design a single global model when there are 

many features interacting in nonlinear ways. An alternative 
approach is to divide the data space into smaller partitions, 
where the modelling of these interactions is easier to 
achieve. These partitions can be further divided into even 
smaller regions, until finally one gets the data space cells 
where simple models can be applied. This is called recursive 
partitioning.
Regression trees use the tree to represent the recursive 
partition. It splits the input data space in partitions and assigns 
a prediction value to each partition. The terminal nodes of the 
tree, denoted as leaves, represent these partition cells. In 
order to determine to which leaf the input data belongs, and 
to assign it the prediction value, the algorithm starts from the 
root node and asks successive binary questions. Depending 
on the outcome of the question, the sub-branch of the tree 
is chosen. Eventually, the algorithm arrives at the leaf node, 
where the prediction is made. This prediction is found as an 
average of all training data instances which reach that leaf 
node.
Suppose a training dataset D = {(xi,yi) ∊ ℝn × ℝ,i = 1, 2, …, l} which 
consists of l training pairs (x1,y1), (x2,y2), …, (xi,yi) , where xi ∊ ℝn is 
the n-dimenzional vector denoting model’s inputs and yi are the 
observed responses to these inputs (model’s outputs). Suppose 
further a division of the input data space into M partitions Rm, m 
= 1, 2, …, M, , where the response is modelled as a constant in 
each partition:

 (3)

where l {x∊Ri} is a binary function that takes the value 0 or 1 
depending on the outcome of the question at the tree split point 
[22]. Constant ci can be determined as an average of responses 
yi in the region Ri. Greedy algorithm is used in order to determine 
the split point [23, 24]. Regression trees can be combined in an 
ensemble, which represents a predictive model composed of 
a weighted combination of multiple regression trees. Various 
algorithms can be used for ensemble learning, such as, for 
instance, bagging and boosting.

2.2.1. Bagging

A major problem with regression trees is high variance, which 
occurs due to the fact that only a minor change in the data 
can cause significantly different tree structures. This happens 
because the error in one of the top splits propagates all the 
way down to the leaves. In bootstrap aggregation, or bagging, 
multiple data subsets Di are created from the training dataset D, 
by sampling from randomly and with replacement [25]. Each of 
these subsets is called a bootstrap sample (or simply bootstrap). 
Since replacement is allowed, the bootstraps might have 
duplicated data instances, or some of them may be omitted, 
resulting in bootstraps different from the initial dataset. Each of 



Građevinar 1/2021

4 GRAĐEVINAR 73 (2021) 1, 1-13

Miljan Kovačević, Nenad Ivanišević, Predrag Petronijević, Vladimir Despotović

these bootstraps is used to build a single 
regression tree, which might have a 
different number of leaves and different 
structure in comparison to the original 
tree. All individual trees are further 
combined in an ensemble (see Figure 
2). The predictions are averaged over all 
trees in the ensemble, thus decreasing 
the variance and improving prediction.

2.2.2. Random Forests 

Random forests represent an extension of bagging that reduces 
the correlation between the individual trees, thus building an 
ensemble of decorrelated trees.
Suppose that training dataset D is composed of l observations 
and n features. First, a sample from the training dataset is 
taken randomly with replacement and bootstrap is created. 
Before each split, m ≤ n features are randomly selected as 
candidates for splitting. The best feature (split point) among 
features is used to split the node iteratively [22, 26]. Single 
tree is grown for each bootstrap and predictions are averaged 
over all trees in the forest. Typical values for m are 
approximately  [20, 24]. Reducing m reduces the correlation 
between any pair of trees in the ensemble, thus reducing the 
variance of the average.
While in bagging the random data subsets are sampled from 
the initial dataset for each tree, in random forests, in addition 
to this, the feature subsets are also randomly selected, instead 
of using all features to grow the trees. Many random trees form 
random forests. 

Figure 2.  Bootstrap aggregation (bagging) in regression tree 
ensembles

2.2.3. Boosting 

Boosting is an ensemble technique where predictors are 
created sequentially, rather than independently, as in bagging. 
The rationale behind this is that each subsequent predictor 
learns from the mistakes committed by previous predictors 
[22]. When gradient boosting is applied to regression tree 
ensembles, the first regression tree is the one that maximally 
reduces the loss function for the selected tree structure and 
the given training dataset. The residual (prediction error) is 
then calculated. It represents the mistake committed by the 
predictor model (the first regression tree). In the next step, 
a new tree is fitted to the residuals of the first tree. In each 
step, a new tree is added to the model, which is fitted to the 
residuals of the previous one. The residual values are usually 
multiplied by the learning rate (value less than 1) to avoid 
overfitting. The final model obtained by boosting is simply a 
linear combination of all trees (usually hundreds or thousands 
of trees), as shown in Figure 3. 
The main idea of boosting is that, instead of using a complex 
single regression tree, which is easily overfitted, a much better 
fit is produced if many simple regression trees are trained 
iteratively, each of them improving the prediction performance 
of the previous ones [22]. 

2.3. Support vector regression (SVR)

Suppose a training dataset {(x1,y1), (x2,y2), …, (xi,yi) ∊ ℝn × ℝ} 
is given, where xi ∊ ℝn is the n-dimenzional vector denoting 
model’s inputs and yi are the observed responses to these 
inputs (model outputs). SVR tries to find an approximating 
function f(x) with deviation ε from the observed response 
yi for all training data x. This approximating function for the 
nonlinear SVR [27] equals to 

 (4)

In Eq. (4) K denotes the kernel function, αi
*, αi and b are the 

parameters derived by the objective function minimization

Figure 3. Gradient boosting in regression tree ensembles
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for the given constraints (Figure 4.). ξi and ξi
* denote the slack 

variables which allow the regression errors to cope to a certain 
extent with otherwise infeasible constraints of the optimization 
problem.

Figure 4. Nonlinear SVR

The constant C > 0 is the parameter chosen by user that denotes 
the amount od deviation larger than e that can be tolerated. An 
increase in C penalizes larger errors. Another parameter chosen 
by the user is the required precision e. RBF kernel function is 
used in this paper [28].

 (5)

2.4. Gaussian process regression

The GP method represents a non-parametric method that is 
defined as an infinite set of random variables such that every 
finite subset follows a multivariate Gaussian distribution. By 
expanding multivariate Gaussian distribution to an infinite 
set of random variables, it is possible to observe GP as the 
posterior distribution over random functions, while the Bayes’ 
rule is applied to determine the probability distribution from the 
training data in a supervised machine learning setup. Consider a 
problem of nonlinear regression:

y = f(x) + ε, ε ∼ N(0,σ2) (6)

Where the function f(·) : Rn → R is an unknown and needs to be 
estimated, yi is the target variable, x are input variables and ε is 
the normally distributed additive noise. The Gaussian process 
regression [29] assumes that f(·) follow Gaussian process 
with mean function µ(·) and covariance function k(· ·). The n 
observations in an arbitrary data set y = {y1, …, yn} , can always 
be imagined as a sample from some multivariate (n variate) 
Gaussian distribution

(y1, …, yn)T ∼ N(µ,K) (7)

where µ = (µ(x1), ..., µ(xn))T is the mean vector, and K is n × n 
covariance matrix of which the (i, j)th element Ki,j = k(xi, xj) + σ2δij. Here 
δij is the Kronecker delta function. Let x* be any test point and y* be 
the corresponding response value. The joint distribution of (y1, …, 
yn, y*) is an (n + 1) variate normal distribution (y1, …, yn, y*) ∼ N(µ*,∑), 
where µ* = (µ(x1), ..., µ(xn), µ(x*))T, and the covariance matrix is: 

 (8)

where K* = (K(x*, x1), ..., K(x*, xn))T and K** = K(x*, x*).
The conditional distribution of y*, given y = (y1, …, yn)T is then 

 with 

 (9)

 (10)

The covariance is a crucial part of the model specification. 
Various covariance functions are used in the experiments. Each 
of these covariance functions depends on hyperparameters 
whose values also need to be tuned. For some covariance 
functions, hyperparameters can be used to determine which 
inputs are more relevant than others, using the automatic 
relevance determination (ARD). For example, consider squared 
exponential covariance function with different length scale 
parameters for each input (ARD SE)

 (11)

where ri denotes the length scale of the covariance function 
along the input dimension i. If ri is very large, relative importance 
of the i-the input is smaller [29]. The hyperparameters {v, r1, ... , rn} 
and the noise variance σ2 can be estimated by the maximum 
likelihood method. The log-likelihood of the training data is 
given by (12):

 (12)

3. Dataset 

The proposed cost estimate methods rely on the development 
of a dataset that includes project and contract documentation 
of RC and PC bridges constructed at the Corridor X, which is 
one of the most important Pan-European transport corridors 
connecting Austria, Hungary, Slovenia, Croatia, Serbia, Bulgaria, 
Republic of North Macedonia, and Greece (Figure 5). 
The current bridge dataset includes complete data on 181 
constructed highway bridges, including 104 bridges with cast 
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in situ RC superstructure and 77 bridges with PC superstructure 
(prefabricated or cast in situ), located at the eastern and 
southern legs of Corridor X in Serbia. Out of the total 181 
bridges, 148 are bridges carrying the motorway, and 33 are 
overpasses not carrying the motorway. The total contract value 
of all bridges included in the dataset is over EUR 100 million.
Analysing the project costs in the created dataset, it can be 
concluded that 77.41 % of all construction costs were the costs 
that are related to steel and concrete. Contracts were signed 
for all bridges between September 2009 and June 2014. The 
cost of labour, material, and quarried aggregate increased 
significantly over that period. Average gross salaries increased 
by approximately 30 %, quarried aggregates price increased by 
16 %, and the price of steel increased by 27 % (maximum values 
compared to September 2009).
The literature review [7-17] shows that a significant number 
of models start from a particular assumption about the model. 
In this paper, an attempt is made to obtain the model from 
the experimental data without making any prior assumptions 
about the model, using a narrow set of data that are available at 
preliminary stages of project development.
Bridge design is generally affected by many variables; hence 
selecting the input variables plays a crucial role in modelling 
construction costs of RC and PC bridges. As concrete and metal 
works are the most cost intensive (accounting for, on an average, 
almost 80 % of all costs), variables that are directly related to 
the amount of concrete works and the amount of metal works 
are adopted as input variables of the model. In this regard, the 
following variables were considered: Total bridge span length, 
Bridge width, Average pier height, Foundation type.

In cases when the Total bridge span length is the same, 
regardless of whether it is composed of a small number of 
large individual spans or a large number of short individual 
spans, a new variable Average bridge span was introduced, 
which better characterizes the bridge length. It can be 
obtained by dividing the Total bridge span length with the 
number of bridge spans.
According to [30], the costs related to formwork and scaffolding 
can amount to up to 20 % of the total construction costs. In 
order to consider the potential impact of these costs, a variable 
Type of bridge construction was introduced in this paper.
The variables Gross salary, Quarried aggregate price index and 
Steel price index allow comparison of construction costs of 
bridges that have been contracted with a different base date.

Table 1.  Input variables used for modelling construction costs of RC 
and PC bridges

Variable ID Variable name

x1 Average bridge span

x2 Total bridge span length

x3 Bridge width

x4 Type of bridge construction

x5 Average pier height

x6 Foundation type

x7 Gross salary*

x8 Quarried aggregate price index*

x9 Steel price index*

*Statistical Office of the Republic of Serbia (http://www.stat.gov.rs/)

Figure 5. Eastern and southern legs of Corridor X in Serbia
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Nine input variables used for all models are shown in Table 1. 
The variable “Type of bridge construction” is binary, and takes 
value 1 for PC span superstructure (prefabricated or cast in 
situ), or value 0 for cast in situ RC span superstructure. The 
variable “Foundation type” is also binary, and takes value 1 for 
deep foundations, or value 0 for shallow foundations. Quarried 
aggregate and steel prices were converted to indexes, using 
prices applicable in September 2009 as base indexes. The 
variable “Gross salary” denotes an average gross salary in 
construction industry defined in contract documentation (note 
that gross salaries vary significantly from September 2009 to 
June 2014).
Average, minimum and maximum values of input variables 
(excluding binary variables) are given in Table 2. The binary 
variable Type of bridge structure has a value of 1 for 77 bridges 
with PC superstructure (prefabricated or cast in situ) and 0 for 
104 bridges with cast in situ RC superstructure. The binary 
variable Foundation type has a value of 1 for 136 bridges and 0 
for 45 bridges. The variable Construction cost is the estimated 
output variable given in €/m2. 

4. Evaluation and performance measures

In this study, the performance assessment of models was 
done using both absolute and relative statistical performance 
criteria, as suggested by Legates and McCabe [31]. he 
considered statistical measures were root mean square error 
(RMSE) and mean absolute error (MAE) as absolute measures, 
and Pearson’s linear correlation coefficient (R) and the mean 
absolute percentage error (MAPE) as relative measures.
RMSE is the measure of differences between values 
predicted by the model ok and the actually observed 
(measured) values dk. It is the measure of general accuracy 
of the model.

 (13)

MAE is used to represent the mean absolute error of the model 
according to equation:

 (14)

R is a measure of linear correlation between values predicted 
by the model ok and the actually observed (measured) values dk:

 (15)

where  represents the mean of dk and ō represents the mean of 
ok, k = 1, 2, ..., N, and N is the number of instances in the dataset. 
MAPE is a percentage-based measure of prediction accuracy. 
It is calculated as an average of the absolute percentage error.

 (16)

The machine learning methods used in this paper were evaluated 
using 10-fold cross-validation, where the dataset is randomly 
partitioned into 10 subsets, 9 of them being used for training 
the model and the remaining one for model validation (testing). 
The cross-validation procedure is repeated 10 times, with each 
of the subsets used exactly once for validation, and 10 obtained 
results are then averaged to produce a single estimation.

5. Results and discussion 

Several state-of-the-art machine learning techniques for 
estimation of construction costs of RC and PC bridges are 
compared in this section, including ANNs and ensembles of 
ANNs, regression tree ensembles (random forests, boosted 
and bagged regression trees), SVR, and GPR. The results 
are obtained using the dataset developed for this purpose, 
containing construction costs and project characteristics 
for 181 RC and PC bridges at the Pan-European Corridor X. 
Root mean square error (RMSE), mean absolute error (MAE), 
Pearson’s linear correlation coefficient (R), and mean absolute 
percentage error (MAPE) were used as performance measures. 
For all machine learning methods, all input variables were used 

Table 2. Average, minimum and maximum values of input and output variables used for modelling construction costs of RC and PC bridges

Variable Average value Minimum value Maximum value

Average bridge span [m] 21.25 6.52 49.00

Total bridge span length [m] 84.24 6.52 628.74

Bridge width [m] 13.43 7.90 19.91

Average pier height [m] 9.60 3.28 35.01

Gross salary 44608 38427 51248

Quarried aggregate price index 109.85 100 115.99

Steel price index 123.37 100 127.58

Construction costs [EUR/m2] 593.65 310.83 1335.39
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as features for modelling construction costs, as shown in Table 
2. Construction cost expressed in €/m2 is the output variable 
that needs to be predicted.
MLP-ANN with one hidden layer was trained using the 
Levenberg-Marquardt algorithm [32].The criterion to stop the 
training was either the maximum number of epochs (set to 
1000), the minimum gradient magnitude (set to 10-5) or the 
network performance (measured as the mean square error 
and set to 0). All input data are normalized in the range [-1,1] 
prior to training. The number of neurons in the input layer is 
determined by the number of input variables, i.e. it consists of 
9 neurons, while there is only one neuron in the output layer. 
The maximum number of neurons in the hidden layer was 
determined experimentally using Eq. 1 and 2 and equals 18. 

Figure 6.  Comparison of performance measures for estimating 
construction costs using MLP-ANNs with different 
configurations: a) RMSE and MAE, b) R and MAPE

Figure 6a shows the performance obtained using RMSE and 
MAE as absolute measures, while Figure 6b presents results 
using R and MAPE as relative measures. The best performing 
model using MAE, R and MAPE as performance measures, 
is MLP-ANN with 10 neurons in the hidden layer. In order to 
further improve model performance, the ensembles of MLP-
ANNs with early stopping were analysed, with base models 
having up to 18 neurons in the hidden layer. Each base model is 
allowed to have different number of neurons in the hidden layer. 
Optimal base models that form an ensemble are determined 
based on the minimum RMSE. Ensembles with 1 and up to 100 
base models were tested, as shown in Figure 7. Learning curves 
presenting RMSE and MAE vs. number of base models in the 
ensemble (see Figure 7a) show that performance improves as 
the number of base models increases, but the curves saturate 
at approximately 40 base models; hence there is no point 
to further add base models in the ensemble, as this would 
increase the model complexity without significant improvement 
in performance. Similar behaviour can be observed in Figure 7b, 
where R and MAPE are used as performance criteria.

Figure 8.  MSE vs. number of trees in the ensemble for different 
minimum leaf sizes using regression tree ensembles 
realized with bootstrap aggregation (bagging)

Figure 7.  Comparison of performance measures for estimating construction costs using ensembles of MLP-ANNs with different number of base 
models: a) RMSE and MAE, b) R and MAPE
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Regression tree ensembles realized using bootstrap 
aggregation (bagging) are optimized for different model 
parameters, including number of trees in an ensemble that is 
limited to 500 and to minimum leaf size ranging from 2 to 15. 
Grid search is used for optimization. Learning curves presenting 
MSE vs. number of trees in the ensemble for different minimum 
leaf sizes are shown in Figure 8. Minimum leaf size of 2 and 3 
gives the best performance measured by MSE. There is no need 
to use more than 50 trees in the ensemble, as no improvement 
is observed with further increase in the number of trees. 
Random Forests are analysed for different model parameters, 
including number of trees in an ensemble limited to 500, minimum 
leaf size ranging from 2 to 10, and the number of randomly 
selected features as candidates for splitting. The rule of thumb is 
that m = n/3 features should be used as candidates for splitting 
for regression problems [24]. Values of m = 2, m = 3 and m = 4 are 
considered in this paper. Grid search is used for optimization. 
Regression tree ensembles realized using boosting are optimized 
for different model parameters, including number of trees in 
an ensemble, learning rate, number of splits and number of 
observations per parent node. Learning rate determines the training 
speed. Learning rates equal to 0.001; 0.01; 0.1; 0.5; 0.75 and 1.0 are 
analysed in this paper. Number of splits is 
exponentially increased, starting from 20 = 
1 to 27 = 128. Number of observations per 
parent node changes between 5 and 20. 
Optimal model is obtained using 64 splits 
and 11 observations per parent node. Grid 
search is used for optimization. Learning 
curves presenting MSE vs. number of trees 
in the ensemble for different learning rates 
are shown in Figure 9. The learning rate 
equal to 0.1 gives the best performance 
measured by MSE. There is no need to use 
more than 30 trees in the ensemble, as 
no improvement is observed with further 
increase in the number of trees.

Criteria
Covariance function RMSE MAE R MAPE

Exponential 117.91 75.89 0.83 13.97

ARD Exponential 95.98 63.25 0.89 11.60

Squared Exponential 121.85 80.02 0.82 14.94

ARD-Squared Exponential 108.75 69.23 0.86 12.25

Matern 3/2 119.99 77.25 0.83 14.27

ARD-MATERN 3/2 105.46 67.72 0.87 12.62

Matern 5/2 120.36 78.03 0.82 14.47

ARD-Matern 5/2 99.40 64.81 0.88 11.83

Rational Quadratic 118.54 76.42 0.83 14.09

ARD Rational Quadratic 122.68 76.88 0.82 14.22

Table 3. Performance of GPR with various covariance functions for prediction of construction costs of RC and PC bridges using RMSE, MAE, R and MAPE as performance measures

Figure 10.  RMSE vs. hyperparameters C i γ for ε = 2-6 using SVR with RBF kernel

Figure 9.  MSE vs. number of trees in the ensemble for different 
learning rates using regression tree ensembles realized 
with boosting (max. 64 splits and 11 observations per 
parent node)
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SVR was analysed using the RBF kernel function. The LIBSVM 
library was used for SVR implementation [33]. The normalization, 
which scales all input data into the range [0,1], was done prior 
to training and testing. The model hyperparameters C,γ and ε 
were first roughly tuned using grid search, as shown in Figure 
10. The SVR model was then fine-tuned into a more accurate 
position by iteratively narrowing down the search area, leading 
to optimum hyperparameters C = 1.7271, γ = 18.7334 and ε = 
0.0157. The number of iterations is limited to 100.
A Gaussian process is completely defined by its mean and 
covariance function, and so GPR algorithm is tested using 
different covariance functions, such as exponential, squared 
exponential, Matern, and rational quadratic, as well as their 
equivalent ARD covariance functions that have a separate 
length scale for each input variable (see Table 3). All inputs and 
targets are normalized to have zero mean and unit variance. The 
mean of the Gaussian process is set to zero and the covariance 
function parameters are determined by maximizing the log 
marginal likelihood.
Table 4 shows summarized results of the prediction of 
construction costs of RC and PC bridges using all machine 
learning algorithms considered in this paper. The best performing 
model is highlighted. The worse prediction is obtained using 
single MLP-ANN, which is expected as most of the competing 
models are ensemble based models. On the other hand, the 
ensemble of MLP-ANNs has one of the best performances 
according to both absolute and relative performance measures. 
Figure 7 shows that at least 10 base models are needed to 
achieve sufficient generalization; however, an ensemble with 
100 base models is adopted as the representative and used in 
further experiments.
Regression tree ensembles using bagging, as well as random 
forests, have shown to be relatively poor predictors for the 
given dataset, unlike regression tree ensembles using boosting 
which perform substantially better. SVR using RBF kernel have 
shown a solid performance with R = 0.86 and MAPE = 12.03 
%. We also tested linear and sigmoid kernels, but the prediction 
was poor. Finally, the best prediction performance was obtained 
using GPR with ARD-exponential covariance functions, with R = 
0.89 and MAPE = 11.60 %.

The additional benefit of GPR models is the fact that their 
training time is significantly lower in comparison to any of the 
ensemble methods. As GPR with ARD exponential covariance 
function performs best according to all performance measures, 
it will be used for future comparisons.

Figure 11.  Feature selection using ARD exponential covariance 
function

Parameters of ARD covariance functions can be used to decide 
which inputs (features) are relevant for predicting a particular 
output, and removing less relevant inputs. The analysis of inputs 
relevance using ARD exponential covariance function is shown 
in Figure 11 using the length-scale of the covariance function 
hyperparameters as the criterion. As the values of the length-
scale hyperparameter are higher, the particular input becomes 
less relevant. Note that the inputs 3 (bridge width), 4 (type of 
bridge construction) and 7 (gross salary) have significantly 
higher values of the length-scale parameter; therefore, they can 
be considered less relevant. 
This can be explained by the fact that the quarried aggregate 
price is dependent on the gross salary, and might carry 
more informative information than the gross salary itself. 
Hence, gross salary is implicitly represented by the quarried 
aggregate price. Regarding the bridge width, the output variable 

Table 4.  Performance of machine learning methods for prediction of construction costs of RC and PC bridges using RMSE, MAE, R and MAPE as 
performance measures

Criteria
Model RMSE MAE R MAPE

MLP-ANN-9-10-1 160.75 115.48 0.7 21.66

MLP-ANN ensemble 96.45 71.71 0.88 13.04

Bagging 121.50 88.72 0.80 15.76

Random Forest 129.05 93.53 0.79 16.58

Gradient Boosting 96.03 67.15 0.89 12.03

SVR-RBF 109.32 68.25 0.86 12.03

GPR ARD-Exponential 95.98 63.25 0.89 11.60
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“Construction costs” is defined in EUR per square meter of 
the bridge superstructure, which might influence the lower 
relevance of the bridge width as a feature. The numerical values 
of the variable width of the bridges in the considered dataset are 
within a narrower range, as the bridges carrying the motorway 
dominate (148), while the number of overpasses is smaller (33). 
This is one of the reasons why the variable width of bridges 
has less relevance to the model. By expanding the dataset in 
future research with a significant number of bridges of different 
widths, the influence of this variable could be determined 
more accurately. A minor relevance of the variable Type of 
bridge structure may be explained by slightly higher costs of 
making a PC span superstructure, although there are potential 
savings in the assembly work. The construction of RC bridges 
is cheaper, but scaffolding is more expensive. In both cases, 
the impact of the project implementation time frame on costs 
was not analysed. No significant difference between these two 
construction methods was observed using the proposed model.
Table 5 presents results obtained for different combinations 
of inputs (features) used for modelling. The binary value 0 or 1 
denotes whether a particular feature is omitted from the model 
or not. Note that all the models with reduced number of features 
outperform the one with the full set of features. The benefit is 
not only in performance gain, but also in smaller complexity and 
faster training of the model. 
The best performing model is model 2 in Table 5 (see regression 
plot of modelled and targeted values in Figure 12), which 

depends on the following input variables: average bridge span, 
total bridge span length, bridge width, average pier height, 
foundation type, quarried aggregate price index, steel price 
index. The performance improves in comparison to the model 
with the full set of features by 0.8 %, measured by MAPE, leading 
to MAPE equal to 10.86 %. The improvement is also observed 
for all other performance measures.

6. Conclusions 

In order to make a decision about the need to build transport 
infrastructure that includes RC or PC bridges, it is necessary 
to estimate the cost of construction as accurately as possible 
in the early phase of project implementation. The estimation 
of construction costs of RC or PC bridges is a complex process 
that is influenced by a variety of factors. This paper gives a 
comprehensive overview of the state-of-the-art machine 
learning methods that can be used for estimating these costs, 
including MLP-ANN, ensembles of MLP-ANNs, regression tree 
ensembles (random forests, boosted and bagged regression 
trees), SVR with RBF kernel, and GPR with exponential, 
squared exponential, Matern, and rational quadratic covariance 
functions.
In order to train and assess the models, a dataset was created 
that includes project and contract documentation for 181 RC and 
PC bridges constructed on Pan-European Corridor X. All models 
were trained and tested under equal conditions using the 10-

Table 5. Prediction of construction costs of RC and PC bridges using GPR with ARD exponential covariance function

Figure 12.  a) Modelled and targeted values for an optimal model with ARD exponential function, b) Regression plot of modelled and targeted 
values

Model x1 x2 x3 x4 x5 x6 x7 x8 x9 RMSE MAE R MAPE

1. 1 1 0 0 1 1 0 1 1 93.55 61.62 0.90 11.38

2. 1 1 1 0 1 1 0 1 1 92.51 59.59 0.90 10.86

3. 1 1 1 1 1 1 0 1 1 95.21 62.63 0.89 11.53

4. 1 1 1 1 1 1 1 1 1 95.58 63.25 0.89 11.60
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fold cross validation. According to the relevant performance 
measures, most of the tested models are able to capture 
very well complex interrelations between the input features, 
and demonstrate strong generalization capability. Although 
ensemble methods, such as ensembles of ANNs, regression 
tree ensembles using boosting and SVR with RBF kernel, 
perform well, they require a considerable amount of time to 
train the models, especially if the number of base models in the 
ensemble is high. On the other hand, the complexity of models 
based on Gaussian processes is substantially lower, but they are 
still able to outperform the ensemble models. Moreover, feature 
reduction is easy to combine with Gaussian process regression 
using ARD, leading to models with better performance and even 
lower complexity. Two out of nine input features can be reduced 
without any negative influence on model performance. To the 
best of our knowledge, no results were previously reported for 

implementation of Gaussian process regression in estimating 
construction costs.
The research carried out in this paper has confirmed that methods 
based on machine learning eliminate the biases introduced by 
human factor, and offer a fast and reliable tool for the construction 
industry to estimate construction costs of concrete bridges, even 
in early implementation stages, when only the basic technical and 
economic characteristics are available. Further research might 
be aimed at improving the dataset used for model training and 
evaluation by including additional relevant data about both the 
existing and new bridges. The problem of estimating construction 
costs is considered as a regression problem. However, it can 
be also observed as a classification problem if the costs are 
divided into groups. In that case, classification algorithms can be 
applied. The developed models can also be applied, with some 
modifications, to other costs during the project life cycle.
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