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Proracun pomicnih okvirnih konstrukcija modificiranim Crossovim postupkom

U radu je prikazan izvorni postupak statickoga proracuna pomicnih ravninskih okvirnih
konstrukcija. Prikazani proracunski postupak izveden je modificiranjem klasi¢noga Crossova
postupka (KCP). Uvedenom modifikacijom KCP-a postignuto je znatno poboljsanje
proracunskoga algoritma pomicnih okvirnih konstrukcija u odnosu na KCP, posebice u
pogledu uklanjanja potrebe za provedbom vecega broja pojedinacnih iteracijskih postupaka
i uklanjanja potrebe za rjeSavanjem sustava linearnih algebarskih jednadzbi.
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In dieser Arbeit wird das urspringliche Verfahren zur statischen Berechnung beweglicher
planarer Rahmenstrukturen vorgestellt. Das vorgestellte Berechnungsverfahren wurde
durch Modifizieren des klassischen Cross-Verfahrens (KCP) durchgefihrt. Die eingefiihrte
Modifikation des KCP erreichte eine signifikante \lerbesserung des Berechnungsalgorithmus
flr bewegliche Rahmenstrukturen in Bezug auf KCP, insbesondere im Hinblick auf die
Beseitigung der Notwendigkeit, eine gro3ere Anzahl einzelner iterativer \Verfahren
durchzufihren, und der Notwendigkeit, Systeme linearer algebraischer Gleichungen zu
l6sen.
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1. Introduction

In an era when computer facilities were not available worldwide,
the procedures for structural design of in-plane static
systems were mostly based on the traditional displacement
method. Unknowns of this method are values of independent
displacements of the system, and, for structures with a large
number of nodes, this method leads to a mathematical problem
of the linear algebraic equations system, with values of
independent general displacements as unknowns.

Using this kind of procedure for the analysis of multi-span and
multi-floor in-plane frame structures often led to a problem
involving a very large number of equations. In civil engineering
practice, solving this mathematical problem was often arduous
and lengthy and, therefore, a pressing need was felt to
develop alternative methods for solving displacement method
equations by eliminating the need to solve a large numbers of
linear algebraic equations. Consequently, several procedures
have over time been created for finding an iterative solution to
equation systems, which involve step by step approximation of
the final solution to the problem.

The pioneering approach in this kind of iterative procedures was
the procedure proposed by K. Caligev [1-4], where the equation
system is solved using the so-called successive approximation
technique. In each iteration step of this iterative procedure,
Calisev produces an equilibrium state of the considered node
by calculating the rotation angle of that node, while the value
of bending moment caused by the considered rotation is not
calculated directly. Values of moments in the cross section of
the structures are derived by using final rotation-angle values of
all nodes. The process is repeated for all nodes of the structure
so as to establish a satisfactory level of accuracy.

The procedure based on the idea similar to that proposed by
Caligev was presented by H. Cross [5-8] in the so-called moment
distribution procedure. In the Cross procedure, the need for
calculating the increment of rotation values for the considered
node is eliminated, and only the values of bending moment
increments are calculated using the so-called division coefficients
and transfer coefficients.

The procedure based on the Cross procedure, and applied on
movable in-plane frame structures, was presented by P. Csonka
[8-12]. For some types of structures, the Csonka's procedure
exhibits significant acceleration of the Cross procedure. Similar
and almost identical procedure for accelerating the Cross
procedure was independently created by O. Werner in Zagreb in
1951. (described in [8, 10-12]).

Another iterative procedure for the analysis of movable in-
plane frame structures, based on the Ostenfeld’s formulation
of displacement method, and known as the single iteration
procedure, was presented by G. Kani in [13].

The procedure presented in this paper is also an iterative
procedure for solving equations of the displacement method,
which is a kind of extension of the Cross procedure applied on
movable in-plane frame structures, and where a significant level

of simplification and acceleration is achieved by introducing
some changes to and extensions of the original Cross procedure.

2. Existing iteration methods

2.1. Traditional Cross procedure applied on
unmovable in-plane frame structures

The traditional Cross procedure (TCP) is the procedure for
structural design of in-plane structures, and is a kind of the
so-called relaxation procedures. According to its mathematical
basis, the original variant of this iterative procedure [5-7] is
an incremental form of Jacobi's iterative procedure for solving
the system of n linear algebraic equations with n unknowns,
where nodal rotation increments are given simultaneously for
all nodes of the structure, and where transferred moment values
obtained in neighbouring cross-sections are used in the next
step of iteration. This TCP variant is used in the USA and in many
other countries [14-16]. In addition, there is another variant of
the Cross procedure in which the increments of nodal rotation
are not given simultaneously. In this variant, using the “node by
node” technique, transferred moments are immediately used, in
the same iteration step, for calculating equilibrium state in other
nodes of the structure for which balancing nodal rotation is not
as yet defined. This TCP variant constitutes an incremental form
of the Gauss-Seidel's iterative procedure, and it is often used in
European countries.

The main idea of this kind of procedure is to establish an
equilibrium state of the system gradually by rotating the
considered node, while at the same time all other nodes in the
structure are fixed against rotation in the current design step.
Using this procedure successively, node by node, the equilibrium
state is achieved for all nodes of the system in each step of
the procedure. The remaining unbalanced moments in each
step of the procedure are the moments transferred from the
neighbouring nodes of the system and, depending on the selected
variant of the procedure, they will be introduced in the current
step of iteration, or will be balanced in the next step of iteration.
s-th approximation of the value of bending moments in the end
of an arbitrary member i-j can be written as:

s s—1
M) =M + ZM,,- MW +P'Zﬂu M (1)
k=1 k=1

win
|

where: M, ; is the fixed-end moment at “i” end of the considered
member /-j caused by application of an external load, p, is the

e

so-called Cross division coefficient for “i" end of i-jmember, M
is the sum of unbalanced moments in the node "i" of the in-
plane structure for the k-th step of iteration, p is the so-called
Cross transfer coefficient which has a constant value, p = 0,5,
B, s the Cross division coefficient for j” end of i member, M
is the sum of unbalanced moments in the node “j" of the frame

structure for the k-th step of iteration.
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The value of the Cross division coefficient for arbitrary cross
section /- of arbitrary node "i" of the considered structure may
be expressed as:

M ==
y ij,.‘]. )

where: k,,,:EL"" is the flexural stiffness of the i member (£/, is

the product of modulus of elasticity and axial moment of inertia
of cross section of the i-j member, L, is the length of the /-
member), and iji,j is is the sum of flexural stiffness values of
all members which are connected at the “i” node under study.

The iteration ends when the convergence criteria are
established. The convergence occurs when the values of all
transferred moments in the s-th step of iteration become lower

than some predefined value &

p- M M,(‘S) <& (3)
for each p; M® of the system.

For many years, TCP was a powerful design tool for static
design of in-plane structures because the need for solving
large numbers of linear algebraic equations was eliminated
from the design process, and the entire process was reduced to
simplest arithmetical operations between division and transfer
coefficients, and on the summation of values of individual steps
of the procedure.

Today, in modern era, when the procedures for static design of
in-plane structures are generally based on matrix formulation
of the finite element method, TCP is rarely used as the tool for
static design of in-plane structures. However, it still remains a
very useful tool for the design of simpler frame structures and,
consequently, it can be used as the algorithmic basis for creating
smaller computer programs for the design of frame structures
without using currently available modern commercial computer
programs for the static design of structures.

TCP is still an unavoidable part of many study courses of
structural design of in-plane structures at faculties of civil
engineering throughout the world. For example, A. Kassimali's
course ( 2011 ) [14] in the USA, R.C. Hibbeler's course (2009)
[15], the course of K.M. Leet, C.M. Uang and A.M. Gilbert (2008)
[16], are just some of the many study courses in which TCP
is an unavoidable theme. In the Republic of Croatia, several
study courses of Faculty of Civil Engineering at the University
of Zagreb contain, as their unavoidable theme, the TCP, which
is presented in a more or less identical form as given in the
textbook published by M. Andelic [8].

2.2. Traditional Cross procedure applied on movable
systems

The original algorithm for TCP was created for static design
of non-movable in-plane structures without translational

displacements (according to displacement method), for example:
continuous beams, non-movable frame structures, etc.

Due to the fact that the need for solving equation systems was
eliminated and mathematical operations were reduced to just a
few simplest arithmetical operations, which are repeated until
the satisfactory level of solution accuracy is reached, TCP was
used for many years in engineering practice as an easy iterative
procedure for structural design of non-movable structures.
The fact that TCP can not be used for the design of movable
structures, such as in-plane frame structures, represents the
main limitation of the initial version of this procedure.

As a consequence, an advanced type of procedure for the design
of movable structures has been developed on the basis of the
original TCP. Using the original type of TCP, in the first step of
this extended type, the restrained structure is designed for
external load, as based on the original structure, by introducing
restraints to prevent translational displacement of structure,
and in which all nodes of the structure are fixed against
rotation, and then the bending moments are determined, which
are balanced in all nodes. The values of restraining forces for
all introduced restraints can be determined using equilibrium
equations of forces for isolated parts of structures.

After that, according to the unknown displacements,
translational displacements are imposed, one by one, as
external load on the restrained structure. Fixed-end moments
are calculated, and the extended type of TCP is used for
calculating new balanced moments and new restraining forces.
At that, as translational displacements are the unknowns, the
expressions for the moments and restraining forces will also
contain this unknown displacement as an unknown factor.
This procedure will be repeated for each unknown translational
displacement and, consequently, n+1 individual Cross iteration
will be obtained, where “n” is the number of independent
translational displacements of the system.

The final value of moments is obtained for each cross section
by summing up moments of all individual influences ( n+1) of
the total restraining force. The number of restraining forces is n,
and each final restraining force contains n unknowns- values of
translational displacements of the system.

As there are no restraints in the original structure, the value
of each final restraining force should be 0. Consequently, the
expressions for the restraining force actually become the
system of n algebraic equations with n unknowns: n unknown
translational displacements of the system. The values of
translational displacements, obtained by solving the system of
equations, are inserted in expressions for bending moments,
and final solutions to the problem are obtained.

The use of such procedure for structures in which the influence
of translational displacement is not negligible, i.e. in the design
of movable multi-floor frame structures, often led to a lengthy
process involving many individual Cross iterations, and to the
problem of solving the system of linear algebraic equations
with independent translational displacements as unknowns.
Because of that, this type of extended TCP was often lengthy
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and arduous and, in addition, the main advantage of TCP — no
need to solve the system of equations — was eliminated.
The extended TCP applied to the design of movable in-plane
frame structures is described in great detail in [8, 14-16].

2.3. Procedure developed by Csonka and Werner

For the static design of movable in-plane frame structures, P.
Csonka and O. Werner developed almost identical procedures
which resulted in significant acceleration of TCP, and this in such

u_n

a way that there was no additional need for “n” TCP iterations
in in the design of in-plane frame structures with “n” floors. “n”
TCP iterations are replaced by the original algorithm in which
the influence of translational displacement is replaced by the
influence of horizontal forces acting in the line of the beams
of the frame structure. These horizontal forces have the same
magnitude as the restraining forces for external load, but act in
opposite directions.

These procedures are based on the assumption of equality
of rotation angle values for all nodes of the same floor and,
consequently, half-frame structures are substituted with “n”
floors. This half-frame structure is loaded by the said horizontal
forces and the flexural stiffness coefficients of its members
are derived by summing flexural stiffness coefficients of the
corresponding members of the original frame-structure.

The nodes of the half-frame structure are fixed but translational
displacements are not restrained.

As shear force values of all columns of the half-frame structure
are 0, unknown rotation angles of the nodes are eliminated
from equations of the displacement method and, according to
TCP, an equilibrium state of moments is achieved by rotating
the node under consideration, whereas all other nodes of the
structure are fixed against rotation.

Due to the fact that the procedure for calculating influence of
horizontal forces (influence of translational displacements
of the floors) is applied on the structure with no-restrained
translational displacements, the obtained division and transfer
coefficients for this procedure differ from the corresponding
TCP coefficients.

The transfer coefficient for columns of the structure always
amounts to p = -1,0 (except for the hinge support of the first
floor column where p = 0), while the coefficient for the beams
isp=0.

The balanced moments, obtained in cross sections of the
substituting half-frame structure by using C-W iterative
procedure, will be distributed back in cross sections of original
frame structure according to the value of the corresponding
stiffness coefficient of the obtained cross section member.

Due to wrong assumption on which this procedure is based
— that rotation angles for all nodes of the same floor are
equal-the moments in the cross sections of original frame
structures will be not balanced in the nodes, except in special
cases. Consequently, in order to make balanced moments,
TCP should be used again for the original frame structure

with restrained translational displacements. By this repeated
TCP iteration, the new set of restraining forces, which should
be equal to O, will be obtained. However, due to the fact that
horizontal forces calculated via TCP are not balanced, the
values of these restraining forces will generally not be equal
to 0, and obviously there is the need for creating a new set
of horizontal forces with the same magnitude as the obtained
restraining forces, but with opposite directions. For these
horizontal forces, the Csonka — Werner procedure should be
conducted once again.

Theoretically, TCP and Csonka — Werner procedures should
alternately be applied until a satisfactory state of equilibrium
of nodal moments and a satisfactory equilibrium of horizontal
forces is obtained.

The number of alternating TCP and Csonka — Werner procedures
can be reduced by applying the so-called corrective factor
which contains the sum of products of shear forces and floor
heights. However, he corrective factor may be used only when
conditions of affinity of shear force diagrams for half-frame
structure columns have been met.

The final solution for moments of the structure can be obtained
by summing moments of first TCP and moments of the second
TCP, multiplied by the corrective factor.

A great advantage of the Csonka-Werner procedure is that it
is no longer necessary to solve the system of linear algebraic
equations nor to calculate translational displacement values.
The procedure itself is reduced to simplest arithmetical
operations.

The main deficiency of this procedure is the fact that, even in
the domain of in-plane frame structures, it can only be used for
structures with the same heights of columns at each floor, and
with the same column supports at the first floor, but without
hinge supports and hinge connections between members of the
structure.

A detailed description of this procedure is given in [8, 10-12].

2.4, Kani's procedure

Another procedure for the static design of movable multi-floor
frame structures, the so called single iteration procedure, was
created by Gaspar Kani[13]. This procedure involves alternating
cycles of calculation of balanced nodal moments (by setting,
node by node, the corresponding nodal rotations) and cycles of
calculation of moments in the columns caused by translational
displacements of the beams of the structure.

In Kani's iterative procedure, the equilibrium state is produced
on the structure with nodes fixed against rotation, without
restraints to prevent translational displacement of structure.
Similar to TCP, Kaniintroduces the so-called division coefficients
for calculating balanced nodal moments, but expressions
for these Kani's division coefficients are different from TCP
coefficients. In Kani's procedure, the influence of transferred
moments is calculated by adding moments from the opposite
end of the member, without using the transfer coefficient.
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In  Kani's procedure, the influence of translational
displacements of the beam lines of the structure is calculated
using the so-called “translational transfer coefficient”, which
is derived for each column from the equilibrium condition for
horizontal forces of the considered isolated part of structures
(created by cutting all columns of the considered floor under
the beams). The moments in all columns of the structure can
be calculated by multiplying translational transfer coefficients
of the considered column with the sum of all moments of the
corresponding floor.

One of the main differences between TCP and Kani's procedure is
the fact that Kani's procedure produces the so-called “complete
iteration” in which the final values of moments, which converge
to the desired values, are calculated, while TCP is the so-called
"differential iteration” in which the increments of the moments
are calculated.

The fact that the final solution can always be produced after
just a single iteration is a great advantage of Kani's procedure.
The need for calculating restraining forces and for solving the
system of algebraic equations is completely eliminated.

Unlike Csonka-Werner procedure, Kani's procedure has not
limitation on the height of columns of the first floor of the
structure (the columns can vary in height) or on the kind of
column supports at the first floor, where the supports can even
be a combination of fixed and hinge supports.

In practice, TCP is more comfortable than Kani's procedure
because there are alternately cycles of calculating balanced
nodal moments using transfer coefficients and cycles of
calculating the state of equilibrium of horizontal forces using
translational transfer coefficients.

A detailed description of Kani's procedure is given in [17].

3. Modification of Cross procedure
3.1. Fixed-end moments of modified Cross procedure

The modified algorithm is based on the same assumptions
on which the original Cross procedure is based: an equilibrium
state is achieved on the undeformed shape of the structure,
contribution of the translational displacement caused by axial
deformation of members is neglected, and contribution of
change of cross-sectional shape is also neglected.

Modified procedure described in the paper is derived for the
design of in-plane structures that contain horizontal (beams)
and vertical (columns) members only, without sloped (inclined)
members and, at that, all columns of the first floor have the
same height.

The rotation of the member-ends and the corresponding

u,n

bending moments have “+" sign if they are counterclockwise.

u o n

The normal force N has a “+" signif itis a tensile force, and shear
force T has a “+" sign if T and N create right-handed Cartesian
coordinate system.

The in-plane movable frame structure with five floors and

one span (Figure 1), subjected to arbitrary external loads, is

considered. The design is carried out by substituting frame
structures in which the rotations of all nodes are fixed but,
contrary to TCP, without restraints to prevent translational
displacements (Figure 1). This substituting frame system is the
so-called "basic system”. The images of “little squares” (Figure
2) placed in nodes of the basic system represent restraints
for preventing nodal rotations only, without preventing
translational displacements.

Pl T 3T 3T 7 7 3 T 3 ¢ 37 7 3 T ¢ 1%
11 N
hS
P, L |
9 0 me
Ps J V3V V3Vl Py |
7 8 ]
P h,
P v’ |
5 6 I
p q; h,
: S P S P P P N ‘A A |
3 4 Y
h1
1 2 |
TT777 Jrar—

Figure 1. Example of movable multi-floor frame structure

The definition of the "floor” of the frame structure is introduced
: the floor is a part of the in-plane frame structure that contains
a row of columns and a row of beams. The beams of the
considered floor are connected with upper ends of columns.
The floors are numbered by numbers: 1, 2, 3 ..., meaning : “floor
1% “floor 2", “floor 3 " ....., where number 1 is the number of the
lowest floor.
For example, the third floor contains: columns 7-5, 8-6 and the
beam 7-8. The third floor contains nodes 7 and 8.
According to the assumption that axial deformations of
the members are neglected, all nodes of a considered floor
will obviously have the same magnitude of translational
displacement.
The rotation angle of columns v, is defined as follows:

U~y

v, = h (4)

1

where: u, is the displacement of an arbitrary i-th floor, u, , is
the displacement of an /-th floor and h, is the height of an
i~th floor (Figure 2), where the angle y, has a "+" sign if it is
counterclockwise.

Figure 2 shows the rotation angle of the 3-rd floor columns.
Using displacement method equations, the moments of
arbitrary i-j column of arbitrary k-th floor, caused by external

loads, can be writtenas: y, =y, _ =y, .
M, =M,; =6k, v (5)

while shear forces can be written as
12'ki,j Vi

Ti,j :Ti,j - h,

(6)
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where: M is TCP's fixed-end moment in j j cross section, K, is
the stlffness coefficient of /5 column, h, is the height of the k th
floor, y, is the rotation angle of columns of the k-th floor which
contains i-j column — caused by translational displacements of
the ends of the considered column, 7_'” is the magnitude of TCP's
fixed-end shear force in ij cross section of /- column (where
both ends are fixed against rotation).
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Figure 2, Deformed form of the substituting restrained system
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Figure 3. shows an isolated part of the basic system obtained by
intersecting 3-rd floor columns at their upper ends.

If we determine by expression (6) the values of transverse forces
in sections 7.5 and 8.6 of columns 3 of floor 3, if we introduce
the notation H3 for the value of the sum of all horizontal external
forces located above the nodes of floor 3 (including forces in
these nodes) (in this case H3 = P1 + P2 + P3 + P8), if we include
these values in the equation of equilibrium of horizontal actions
of this isolated element,

Z ix) — _7:8,6 =0 (7)

where is the sum of all external horizontal forces situated above
the 3-rd floor nodes, (including nodal forces) and T75 and Tgg
are shear forces of 3-rd floor columns determinedfrom Eq.
(6).

Using Eg. (7), the magnitude of rotation angle of 3-rd flor
columns can be written as

7_-3_’1-13
-h 8
12K, ° (©)

3

Vs =

where T, =T, , +T, ;s the sum of TCP's fixed-end shear forces
for upper ends of 3-rd floor columns K, =k, +k;  is the sum of
stiffness coefficients of 3-rd floor columns.

Applying Eq. (5) (combined with eq. (8)) on the cross section 7,5
of column 7-5 of the 3-rd floor, the magnitude of MCP's fixed-
end moment caused by external loads for cross section 7,5 of
column 7-5 of the 3-rd floor, can be written as:

M7,s =M7,5 +i'(Hs _7_—3)'h3 )

Alen Stupar
q,
P, T T 7 3 7 1T 7 3 3 3 7 1 1 1
1 12
P
P, $ ¢
9 10
q, —>
Py ' 7 7 3 37 3 7 3 37 3 37 1 1 3 Ps
%_—7 ég
T T

76 86

Figure 3. Isolated 4-th and 5-th floors of considered frame structure

The magnitude of MCP's fixed-end moment caused by external
load for cross section 7,5 of column 7-5 of the 3-rd floor is given
in expression (9). The magnitude of MCP's fixed-end moments
for all other cross sections of columns of the 3-rd floor ( 5,7,
8,6 and 6,8 ) can be determined by applying Eq. (9) to all other
columns of the 3-rd floor.

Based on the above considerations, as the considered 3-rd
floor structure has been arbitrarily selected, Eq. (9) can be fully
applied to any column at any floor of any in-plane movable
frame structure, regardless of the number of columns per floor.
For arbitrary in-plane frame structure with arbitrary number of
floors, and with arbitrary number of columns, the MCP’s fixed-
end moment for ij cross section of arbitrary column i-j of an
arbitrarily selected k-th floor, can be written as:

(H,-T,)-h, (10)

~ _ k
M, =M,  +—=
2-K,
where: M is the TCP's fixed-end moment for i,j cross section
of column i I—J of the k-th floor, £ is the stiffness coefficient of
column i-j of the k-th floor, K, is the sum of stiffness coefficients
of all columns of the k-th floor, H, is the sum of all horizontal
external forces acting above the k-th floor (including the forces
acting alongside the beams of the k-th floor), 7_]( is the sum of
TCP's fixed-end shear forces for upper ends of all columns of
the k-th floor, and is the height of the k-th floor.
As nodal translational displacement can not produce beam
rotations, the magnitude of the MCP’s fixed-end moment for
arbitrary u,v cross section of arbitrary beam u-v of arbitrary k-th
floor can be written as

M,,=M,, (11)

where A_/Iu,v is the TCP's fixed-end moment for u,v cross section.

3.2. Division coefficient of modified Cross procedure

The MCP's fixed-end moments obtained M7 5 M78 [ M79
for cross sections of node seven of the basic system are not
balanced and, consequently, they are not the final solution to
the original problem because they are calculated for the system
with nodes that are fixed against rotation.

An overall unbalanced moment of node seven is the sum of
individual moments:

MO =M, +M,, +M,, (12)
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where superscript (0) denotes the initial unbalanced state of the
moments for node 7, according to step numbering of MCP.
Known expressions for the moments and shear forces of the
fixed-end member /- ( with length Lu.), caused by forced nodal
rotation ¢, and @, are:

m, =4k ¢ +2-k @, (13)

9, (14)

The moments for cross sections of node 7 of the basic system
are produced by defining an angle increment Ag,” . The sum
of these moments has the same magnitude as the unbalanced
moment M., but the sign is opposite (Figure 4). All other
nodes of the basic system are fixed against rotation. The
superscript “(1)"in Ap."" denotes the first step of the iterative
procedure.

It is obvious that, for this kind of loading, the sum of all external
horizontal forces of arbitrary floor "k” is:

H (ApY)=0 (15)

1 ‘

2

Figure 4. Substituting restrained system subjected to load by rotation
of node 7

The increments of the moments that are fixed-end moments
caused by A, can be calculated by applying (13) to all cross
sections of the structure, while all other nodes are fixed against
rotation. The increments of the shear forces that are fixed-end
shear forces caused by Ag," can be calculated by applying (14)
to all cross sections of the structure.

Fixed-end bending moments and shear forces caused by Ag,"
can be calculated by applying (13) and (14) to the 3-rd and 4-th
floors:

M, (Ap)=4-k; . -AQ M, (Ap") =2k, ;- Apl,

M, (ApiM) =4k, o - Ap™, M, (Api) =2k, .- Apl"  (16)
M, (Ap) =4k, - AQY M, o (Ap)") = M 4 (Ap}") =0
and

_ k _ k
T, (Ap")=6-—">- Api" T, (Ap;") =6 ‘f Ay

_ _h ] (17)
T8,6 (A(pgl)) = T8,10<A¢§1)) =0

where h, is the height of floor 3, and h, is the height of floor 4.

The sum of the fixed-end shear forces for all columns of the
3-rd floor, and the sum of the fixed-end shear forces for all
columns of the 4-th floor, can be written as

— — - k
TG =T 5 (A0 )+ T, (Mgl =625 AP
3

(18)

_ _ _ k
T,(AQM)=T,, (Acoi“)”g,m(wi“)=6‘h£'A"’9)

4

By inserting (15), (16) and (17) into general expression (10), the
expression for MCP bending moments for cross sections 7,5 and
7,9 of columns 7-5 and 7-9 caused by rotation A" of node 7
to which these columns are connected, can be written as:

1)y _ (k7,5 )2 (1)
A,\47,5(A§07 )_[4'k7,5 -3 ]'A§07
3
(19)
Wy _ (K76 y @
A,\/’7,9 (A¢7 ) =[4 'k7,9 -3 K—] ' A¢7

4

where K, is the sum of stiffness coefficients for the 3-rd floor
and K, is the sum of stiffness coefficients for the 4-th floor.

The combination of (11) with (13) vields the expression for the
MCP bending moment increment for cross section 7-8 of the
beam 7-8 caused by Ag,:

AM, (Aq’;l)) =4-k,, 'A@l) (20)

Assuming the expression for MCP coefficient 5,'1. for arbitrary
column i-j of an arbitrary k-th floor is defined as:

(k,,)’

k

a. =4k . -3

1] 1

(21)
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where k// is the stiffness coefficient of the considered column
and K is the sum of stiffness coefficients of all columns of the
k-th floor to which the column i-j belongs. Now, (19) can be
rewritten as follows:

AIw7,5 (A¢§1)) = 57,5 : A‘ﬂS)
(22)
AIw7,9 (A@”) = a7,9 : A‘ﬂ?

Assuming the expression for the MCP coefficient @, for an
arbitrary beam u-v of an arbitrary k-th floor is defined as:

51 =a =4-k.’. (23)
Now, (20) can be rewritten as follows:
AM7,8 (A@”) = 57,3 'A@l) (24)

According to KCP tags, the definition of the MCP “division
coefficient” can be introduced for arbitrarily selected cross

un

section i,j of arbitrarily selected node “i",
g (25)

== 5
/’l/,j A

1

where 5,.,1. is MCP coefficient for arbitrary cross section i,j of the
node “i" that can be calculated for cross sections of columns by
applying (21), and for cross sections of beams by applying (23),
and ,Z\,, is the sum of MCP @, ; coefficients of all members that
are connected to node “i". Now, according to KCP, the balancing
moment increment AM”.‘S)( D) of any s-th MCP iteration
step caused by incremental rotation A, for any cross section

i,j of any node "i", can be written as

AMO(AQ) = i1, -MP (26)
where i ; is the corresponding MCP division coefficient, and
M is the sum of unbalanced moments for node “i", for the
current s-th MCP iteration step.

According to definitions from KCP and MCP, the moments in
Exp. (26) are the so-called MCP distributed moments.
Specifically, using (21), (23), (25) and (26) for cross sections
of node 7, the balancing moment increments caused by
incremental rotation Ag," ... (distributed moments) for the first
iteration step, can be written as

AIV’7,5 (A¢;l)) = :[17,5 ’ Msl)' AIV’7,9 (A¢§1)) = /'77,9 ’ M;”
(27)
AM7,8 (A@l)) = [‘7,8 'M;”

where MCP division coefficients /z,, i fi,, are calculated by
applying (21) and (25), and the coefficientt , ; by applying (23)
and (25).

3.3. Transfer coefficients of modified Cross
procedure

Exceptin cross sections of node 7, bending moment increments
caused by incremental rotation Ag,!" also occur in other cross
sections of the basic system.
By applying (15) and (16) (for cross sections of the column
8-6) and (18) (for the 3-rd floor) to (10), the bending moment
increments for cross sections 6,8 and 8,6 of the column 6-8
caused by incremental rotation Ag,"'can be written as:

k, .-k
A, (Ap") =AM, ((Ag) ==3-722 =52 AglY (28

3

where k.. and k,, are the stiffness coefficients of columns
7-5 and 6-8 of the 3-rd floor, to which node 7 ( rotated by
incremental rotation Ag, belongs.
Ifthe correspondingsides of (28) are divided by the corresponding
sides of expression (19) for AM, (A¢,!"), we obtain:

AMs,s (A¢§1)) _ AMB,G (A(pgl)) _ 3'ks,s
AM, (A@Y)  AM, (Ap) 3.k, —4-K,

(29)

According to the definition from KCP, the MCP “transfer
coefficient” 5,;/.,,”'” from the cross section j j of an arbitrary
column i-j at an arbitrary k-th floor can be applied to cross
sections m,n and n, m of the column m-n at the k-th floor, as
follows:

3-km.n

Bi,j-m,n = Pi,j-n,m = Pj,i-m,n = Pj,i-n,m =m =0

where kU and & are stiffness coefficients of columns i-j and
m-n at the k-th floor, and K, is the sum of stiffness coefficients
for the k-th floor. Then, by applying (46) to (29) for columns 7-5
i 6-8 at the 3-rd floor, we have:

AMs,s (A@l)) = AMs,e (A</’§1)) = ﬁ7,5—6,8 'AM7,5 (A¢’§1)) (31)

where p, . is the MCP transfer coefficient (TCMCP) from cross
section 7,5 of column 7-5 to cross sections 6,8, and 8,6 of
column 6-8 of the 3-rd floor.

As the 3-rd floor and node 7 of the considered movable frame
structure were chosen completely arbitrarily, it follows that the
expression can be set for the relationship between incremental
bending moments in cross sections of any 2 columns of the
considered floor, for any movable frame structure with arbitrary
number of floors and arbitrary number of spans.

If the incremental rotation Ag, is set for an arbitrarily selected
node “i" of an arbitrary k-th floor of a considered movable
frame structure, which causes incremental bending moment
AM, (@) in the cross section j j of the column i of k-th
floor, then, according to expression (31), the corresponding
incremental moments for the member ends m-n and n-m of
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an arbitrarily selected column m-n of the k-th floor can be
written as:

AMm,n(A¢i):AMn,m(A¢i):5 'AMi,j(A¢)i) (32)

i,j—m,n
where f’,;j-m,n is the MCP transfer coefficient for the transfer from
the cross section i,j of the column i-j to cross sections m,n and
n,m of the column m-n; here the columns i-j and m-n are the
columns of the k-th floor of the structure.

If expression (48) is appropriately applied to cross sections
of column 8-10 of the 4-th floor, the incremental bending
moments of cross sections 8,10 and 10,8 of the 4-th floor can
be written as:

AMB,:[O (A@l)) = AMIO,B (A@l)) = ﬁ7,9—8,10 'AM7,9 (A@l)) (33)

where p, . . is the TCMCP from the cross section 7,9 of column
7-9 to cross sections 8,10 and 10,8 of column 8-1; at that,
columns 7-9 and 8-10 are the columns of the 4-th floor.

Due to incremental rotation Ag,'", incremental moments are
also produced at the opposite ends of columns 7-5 and 7-9
(connected to node 7).

If expression (15), expression (16) for cross section 5,7 of
column 7-5, and expression (18) for the 3-rd floor, are included
in expression (10), then the expression for incremental bending
moment of cross section 5,7 of column 7-5, caused by
incremental rotation Ag,", can be written as:

)

3

AM5,7 (Ago;l)) = [2'k7,5 -3 ]'AgD;l) (34)

Division of the corresponding sides of (34) by the corresponding
sides of expression (19) for AM7Y5(A(p7“’) yields:

AM,,(A)") _ 3k, —2:K,
AM, J(ApY) 3k, —4-K,

(35)

If, in accordance with the foregoing, a definition of "transfer
coefficient” p, . is introduced for transfer from the cross section
i,j of an arbitrarily selected column /- jof an arbitrary k-th floor to
the opposite cross section j i then we have:

3.k, —2-K,

Pij i =Pjiij _W

(36)

where k is the stiffness coefficient of the column i-j of the k-th floor
and K, is the sum of stiffness coefficients for the k-th floor; then, the
application of expression (36) to the column 7-5 of the 3-rd floor and
introduction of the result into the expression (35) yields:

AMSJ (A¢§1)) = ﬁ7,575,7 ’ A,w7,5 (A(pgl)) (37)

where ;375’5‘7 is the TCMCP from cross section 7,5 of the column
7-5 to the opposite cross section 5,7.

Ifincremental rotation Ag, is set for an arbitrarily selected node
of an arbitrary k-th floor, which would cause incremental moment
AMi,j(A(pi) at the cross section i,j of column i-j (connected to the
node "i" atits end “i") of the k-th floor, then, according to (37), the
corresponding incremental moment (transferred moment) at the
opposite end j,i of that column can be written as:

win
|

A/V’j,i (Agp) :ﬁi,j—j,i 'AMi,j (Ag) (38)

where ﬁu—u is the TCMCP from the cross section ij of an
arbitrarily selected column i-j to the opposite cross section j,i
of that column.

By appropriate application of expression (38) to the cross
section 9,7 of column 7-9 of the 4-th floor, the incremental
bending moment at the cross section 9,7 of the 4-th floor can
be written as:

A/\/’9,7 (A@l)) = 57,979,7 ’AM7,9 (A@l)) (39)

where p, . is the TCMCP from the cross section 7,9 of column
7-9 to the opposite cross section 9,7 of that column.

Finally, due to incremental rotation Ag.!" the corresponding
incremental moment is also produced at the opposite end 8,7 of
the beam 7-8 (connected to node 7). Because the incremental
rotation Ag," does not produce rotation of the beam 7-8, but
only its translational displacement along the horizontal line, the
expression for the relationship between increments of bending
moments at the ends of the beam 7-8, can be written as:

AM8,7 (A(pgl)) = /57,8—8,7 : AM7,8 (AK;”) (40)

where l57,878,7 is the TCMCP from one end of the beam 7-8 to the
other, which has a constant value of 0.5, just like in TCP.

In general, the value of TCMCP for any beam m-n of any
movable frame structure has the same value as the value of the

wn,

TCP transfer coefficient "p”:

pm,n—n,m = 5n,m—m,n =p= 015 (41)

and the value of the MCP moment transferred to the opposite
end of the beam is the same as the corresponding TCP value:

AM, (Ap,)=p “AM,, (Ap,)=0,5-AM, (Ag,)(42)

m,n—n,m
where Ag,_is the increment of the angle of rotation of node "m”
to which the beam m-n is connected.

It is obvious that incremental rotation Ag_!"does not produce
increments of moments at cross sections of the 1-st, 2-nd
and 5-th floors of the considered frame structure (Figure 3).
This conclusion results from the application of expression (10)
to all columns of the 1-st, 2-nd and 5-th floors, and from the
application of expression (11) to all beams of the 1-st, 2-nd
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and 5-th floors, taking at that into account expression (15) and
the fact that for each arbitrarily chosen member i-j of the 1-st,
2-nd and 5-th floors the corresponding values of internal forces
caused by Mg, are:

According to definitions from the TCP, the increments of
moments in expressions (32), (38) and (42) of the MCP are also
named transferred moments.

3.4. Steps of modified Cross procedure

Once we have defined MCP parameters (according to TCP
definitions): MCP fixed-end moments (expressions (10) and
(11)), MCP coefficients aj ( expressions: (21) for columns and
(23) for beams ), MCP division coefficients ( expression (25)),
MCP transfer coefficients (expressions: (30) and (36) for columns
and (41) for beams), the MCP can be performed for an arbitrary
translationally movable structure with an arbitrary number of
floors and spans. The MCP is performed in exactly the same way
as the TCP, successively, node by node, where in each step of the
procedure all nodes are in an equilibrium state. The remaining
unbalanced moments for each step of iteration are the so-called
transferred moments from neighbouring nodes of the structure,
which will be balanced in the next step of the iteration.

As already shown, the main difference between the MCP and
TCP lies in the expressions for: fixed-end moments, coefficients
a division and transfer coefficients, where the contribution of
translatlonal displacements is built into the MCP.

In TCP, transferred moments are realised only at the opposite
ends of the members connected to the node with a given
incremental rotation, while in MCP, transferred moments
appear at the opposite ends of connected beams and at the
ends of all columns of the k-th and (k+1)-th floor (if the k-th
floor is not the last floor of the structure), where the considered
node with a given incremental rotation belongs to the k-th floor.
The MCP approximation of the bending moment at the end "i"
of an arbitrarily selected column i-j of an arbitrary k-th floor can
be written as:

M =M, +Z(y,] M"’)+Z‘“Z(pmn ot ML) (66
m,n r=1

" u

where: M is the overall unbalanced moment for node “i" of
ther-th |terat|on step, M_"is the overall unbalanced moment of
the r-th iteration step for an arbitrary node "m” of an arbitrary
column m-n of the k-th floor, and Y_“>"(p,, ., #,,-M") is the
sum of moments transferred from ¢tbss Sections of all columns
of the k-th floor to the cross section i,j (summarized by all
iteration steps, with (s-1)-th step as the last step ).
In the s-th step, the approximation of the bending moment at
the end of an arbitrary beam u-v can be expressed as:
s—1
ML), =M, +Z(uu VM +05 3 (7, - M) (15)
k=1

where the meaning of individual members of expression (45) is
in accordance with the meaning of the corresponding members
of expression (1) for TCP.

Just as in TCP, the MCP iteration will end when the convergence
criteria according to expression (3) are established.

3.5. Domain of application of MCP

The procedure shown in the paper is suitable for the design of
multi-span and multi-floor in-plane frame structures without
sloping members of the structure, where there are no vertical
translational displacement projections of nodes. In structures
with sloping beams or sloping columns, an external load would
cause rotation of beams, which would make expressions for the
division and transfer coefficients more complicated. However,
this is beyond the scope of this paper.

Only the coefficients for the case of vertical columns of the 1-st
floor, without members with hinged ends, are shown in this
paper.

It is however obvious that MCP can very easily be extended to
structures with different heights of columns at the 1-st floor,
with hinged ends of any member of the structure, and with any
combination of supports of the structure. In sections 2.3 and 2.4
of the paper, known expressions should be used for stiffness
coefficients for fixed-end—hinged-end members (derived by
applying the static condensation technique) and, for the case of
different column heights, use should be made of the fact that
all rotation angles of the 1-st floor columns-as displacements
of all nodes of the 1-st floor are equal-can be written via one
single parameter: for example, via rotation angle of the first
column of the 1-st floor.

All these expressions have been derived by the author but, due
to space limitations, they are not presented in this text. These
expressions will be used in a future publication.

The procedure shown in this paper is suitable for creating a
smaller computer program in which all steps of the procedure
(that are repetitive in nature) will be performed automatically.
Within such a computer program, due to an increased number
of MCP transferred moments compared to the number of TCP
transferred moments (the moments are transferred to cross
sections of all floor columns to which the considered node
belongs, and to cross sections of all floor columns above), there
is no loss of clarity and efficiency of the procedure in relation to
an increase in the number of floors or the number of spans of
the structure.

4. Numerical example

4.1. Design using MCP

An example of a two-floor movable in-plane structure for which
a moment diagram will be determined using MCP is shown in

Figure 5. Cross sections of all members are rectangular, and
the width and height (b/h) values of individual members are

664

GRADEVINAR 72 (2020) 8, 655-671



Design of movable frame structures using modified Cross procedure

presented in Figure 5. The modulus of elasticity of the material
of all members is assumed equal to E = 3:107 kN/m?.

Stiffness coefficient values of members of the structure under
study are:

K, 5=k, ;= 15625 [kNm], k, = 18750 [kNm], k, , =k, , = 6750 [kNm]
k,, =k, =5062.5 [kNm], k_, = 16000 [kNm]
Stiffness-coefficient sums for each floor are:

K =k, +k,+k,,=26125[kNm] K, =k, +k; = 13500 [kNm]

The values of the TCP fixed-end moments in the cross sections
of all members of the structure are obtained by applying well
known formulas of the statics of in-plane structures:

Mzs = I\_/Izh5 =18.00 [kNm], IW&7 = /\_”5,1, = -18.00 [kNm]

M, ;= 12.50 [kNm], M, , = -12.50 [kNm]

M, =-18.75 [kNm], M, = 18.75 [kNm]

while these TCP values for all other members that are not
subjected to load are equal to O.

The values of TCP shear forces in cross sections of all columns

in the structure are obtained by applying known formulas of the
statics of in-plane structures:

T,,=-2500[kN]T,, =2500[kN]

while these TCP values for all other members that are not
subjected to load are equal to O.

According to the previously presented MCP definitions, the sum
of horizontal forces for each floor is:

H, =P+ P,- P,=50.00 [kN], H, = P, = 60 [kN]

while the sum of shear forces for each floor is:

T, =T, +T +T,,=0[kNLT,=T, +T, =2500[kN]
The expression (11) can be used to obtain the values of the MCP
fixed-end moments in cross sections of the beams, which are
equal to the values obtained for the TCP fixed-end moments
of beams.

The expression (10) can be used to obtain values of the MCP
fixed-end moments in cross sections of the columns of the
structure:

I
2

., =M, =M, = 19.378 [kNm],

4,1 3,6

M

25

M, , = 61.244 [kNm]

M, , =M, =26.250 [kNm], M,, = 45.000 [kNm], M, = 7.500 [kNm]
MCP division coefficient values for the nodes of the structure
can be obtained by appropriate use of expressions (21), (23) and
(25):

for node &: fi, , = -0.1745, f1,, = -0.1790, i, , = -0.6465

for node 5: /1, , =-0.1831, /i, = -0.0893, /i, = -0,3307, /i, =-0.3969

for node 6: /2, , = -0.1875, 1, = -0.8125

for node 7: j1,, = -0.7874, j1, = -0.2126

q=6,0 kN/m
P,=60 kN N .
i l i l i for node 8: 41, , = -0.7874, i, .= -0.2126
7 03/05m 8 1 ' '
€ £ 1,50m . . .
- m | P=50kN No static condensation technique was
< = used for column 6-3, for which node 3 is
° =60kN/m ° g=60kN/m 150m  its hinged support. In the basic system,
P40 kN | P A | L oL L] node 3 is fixed against rotation and, in the
4 03/05m 5 03/05m 6 iterative procedure, this node is subjected
to load by such amount of incremental
rotation that it causes disappearance
E E E 4som of bending moment in the cross section
< g g 3,6. Accordingly, since node 3 has only
m = m
° © ° one cross-section 3,6, the MCP division
1 2 3 coefficient for that node is obviously equal
TAZGT JIATT toO: fi, =-1,0.
R The MCP transfer coefficient values are
obtained by using expressions (32) and
(36) for the cross sections of the columns:
60m 50m

Figure 5. Two-floor frame structure for numerical example

pm-m = p6,3-3,6 =04130, pA,1-5,2 = p6,3-5,2 =-05374
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;3&’176‘3 = 56,34.,1 =-0.1700

ﬁs,z—z,s =0,0752, ﬁszm = [)5,276,3 =-0.2688

f)h}“ = fJ&SiSIB =0.2000

P.».ss = -0.6000

Py, = -0.6000

The previously shown property of transfer coefficients is used:
p,,=p,,from(36)andp,, =P, .iP,.,= P, from(30).

According to expression (57), the values of the MCP transfer
coefficients for cross sections of all beams of the frame structure are
equal to the corresponding TCP transfer coefficients, and amount to:
0.5000.

The calculation scheme of the MCP iterative procedure is shown
in Figure 6. The calculation scheme is created in accordance with
the usual form of TCP calculation schemes as used in engineering
practice in the Republic of Croatia, and also in accordance with the
schemes depicted in [8]. The iteration was performed according to
the Gauss-Seidel procedure, in which the transferred moments are
immediately introduced into calculation in the ongoing iteration step.
A "square” (with the values of the MCP division coefficients of that
node) is drawn for each node of the structure, and the values of the
initial MCP fixed-end moments are entered below cross sections of

each member of the structure. In the scheme shown in Figure 6, the
MCP transfer coefficients are also entered accordingly.
The results of the MCP iterative procedure presented in the paper
are rounded to four significant digits.
The MCP iterative procedure begins by balancing the moments
in node 5. The initial unbalanced moment of node 5 is the sum of
MCP fixed-end moments in the cross sections of node 5, whose
magnitude is: +63.2441 kNm. By multiplying this unbalanced
moment by division coefficients for node 5, the balancing increments
of moments are obtained: for a cross section 5,2: -11.5800 kNm, for
a cross section 5,4: -20.9148 kNm, for a cross section 5,8 -5.6477
kNm, for a cross section 5,6: -25.1015 kNm. By subsequently
multiplying these distributed increments of node 5 moments by the
corresponding MCP transfer coefficients, transferred increments
of moments are obtained as follows: for cross section 2,5: -0.8708
kNm, for cross sections 4,1 and 1,4: +3.1127 kNm, for cross sections
6,3 and 3,6: +3.1127 kNm, for cross section 4,5: -10.4574 kNm, for
cross section 6,5: -12.5508 kNm, for cross section 8,5: -1.1294,
kNm, and for cross sections 4,7 and 7,4: +3.3866 kNm.
The unbalanced moment of node 8 is the sum of MCP fixed-end
moments in cross sections of that node and transferred moments
from node 5, and its value is: +25.8704 kNm. If this unbalanced
moment is multiplied by division coefficients for node 8, balancing
increments of moments are obtained as follows: for cross section
8,5: -5.5000 kNm, and for cross section 8,7: -20.3704 kNm. By
subsequently multiplying these distributed increments of the
node 8 moments by the corresponding MCP transfer coefficients,
transferred increments of moments are obtained as follows: for
cross section 7,8: -10.1852 kNm, for cross

P, . .,=0,5000 .
o e & section 58: -1.1000 kNm, and for cross
%, o :
o () E— J— 1 (kNm] sections 4,7 and 7,4: -3.3000 kNm.
X 8. 4559 45.00000 .
L 0920 W v z i The unbalanced moment of node 7 is also
nas00 fyrees - 16.04450 -0.00161 i I
e b o semss soizm e calculated. This moment is equal to the sum
. 0.01104 0.14062 o7l " . .
2w ; bt e o Lo o of MCP fixed-end moments in cross sections
e O 0.002% nm‘w‘wyaﬁ o 0.00708 s .
s Shes o o S e S of that node, and previously transferred
ooz Mg p- ot 9 ar .
o Tl Swm o S o 8| owm oo moments from nodes 5 and 8, and itamounts
0.00604 Df ggdgg:s -0.00714 ﬁ' -0.01422 .01000
o HE’ 223 Sosr 3 S o to: 40.7534 kNm. By multiplying this
000006~ 0.016050 & :‘0&! 0.00360 PR . .
o s =-0,6000 oo unbalanced moment by division coefficients
0.001205 Lo Prsas™ 0 -0.88722 0.00460 . )
S i Ps1,=-06000 Siows oouzmz for node 7, balancing increments of moments
-0.00325 3.30000 ER 161
oo e e Py are obtained as follows: for cross section 7,8:
T2oits AT Pus 505000 e Psg.55=05000 > -32.0893 kNm, and for cross section 7,4:
g % L.
o S %l -8.6641 kNm. By subsequently multiplying
+18.00000 79.02445 1 0.0000 i 1 |
£ . R R o these distributed increments of node 7
. .501 2 T 721 A1.58 ; y .
S oo == Vi aw o M Ggm i moments by the corresponding MCP transfer
0.02220 0.00230 18964 0.04822 0.00284 -0.07019 e e :00‘00“17 (=] Sits0et . .
perees She oo T o B [ . coefficients, the following transferred
pre B SR e G S T I =
e S oo e - T L increments of moments are obtained: for
2507 o) 000250 e im S iz s 3 . .
s g || e gmm ZE oew @ R = cross section 8,7: -16.0445 kNm, for cross
R T DT R i section 4,7: -1.7328 kNm, for cross sections.
B | I Tow 6 um || g
0.00044 o YTy profieg by o Sty Do 5,8 and 8,5: +5.1984 kNm.
st v P54, ="0.2688 sz e P52 ="0.5374 P 0.01840 Th bal d t of de 4 | |
101 0.1 .2~ - ! N +24.40840 g
e i <p—osva T S <paomozeEs i s e unbalanced moment of node 4 is also
" .37 e - 0.00930: H '
Soorm T soorr S, s calculated. Itis equal to the sum of MCP fixed-
158219 = —L— essror e end moments in cross sections of that node
1.0 : .
Duras=Paas=-01700 and previously transferred moments from

Figure 6. Calculation scheme of MCP iterative procedure for numerical example

nodes 5, 7 and 8, and itamounts to: +61.2376
kNm. By multiplying this unbalanced moment
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by division coefficients for node 4, the following balancing increments
of moments are obtained: for cross section 4,5: -39.5901 kNm, for
cross section 4,1: -10.9618 kNm, and for cross section 4,7: -10.6862
kNm. By subsequently multiplying these distributed increments of
node 4 moments by the corresponding MCP transfer coefficients,
the following transferred increments of moments are obtained: for
cross section 5,4: -19.7955 kNm, for cross section 1,4: -4.5491
kNm, for cross sections 5,2 and 2,5: +5.8909 kNm, for cross sections
3,6 and 6,3: +1.8635 kNm, for cross section 7,4: -2.1372 kNm, and
for cross sections 5,8 and 8,5: +6.41172 kNm.

The unbalanced moment of node 6, equal to the sum of MCP
fixed-end moments in cross sections of that node and previously
transferred moments from nodes 4 and 5, is also calculated. By
multiplying this unbalanced moment amounting to: -0.6969 kNm by
division coefficients for node 4, the following balancing increments of
moments are obtained: for cross section 6,5: +0.56596 kNm, and for
cross section 6,3:+0.13061 kNm. By subsequently multiplying these
distributed increments of node 6 moments by the corresponding
MCP transfer coefficients, the following transferred increments
of moments are obtained: for cross section 5,6: +0.28298 kNm,
for cross section 3,6: +0.0542 kNm, for cross sections 1,4 and 4,1:
-0.0222 kNm, and for cross sections 2,5 and 5,2: -0.070188 kNm.
The moment of the supporting node 3, equal to the sum of MCP
fixed-end moments in the cross section of that node and previously
transferred moments from nodes 4, 5 and 6, is also calculated.
Multiplying this supporting moment amounting to +24.4084 kNm by
the division coefficient for node 3, amounting to - 1.0, the increment
of supporting moment for the cross section 3,6 is obtained: -24.4084
kNm. Thus the total supporting moment at that hinged support 3
assumes the value of 0. By subsequently multiplying this distributed
increment of node 3 moment by the corresponding MCP transfer
coefficients, the following transferred increments of moments are
obtained: for cross section 6,3: -10.1295 kNm, for cross sections
1,4 and 4,1: +4.1494 kNm, and for cross sections 2,5 and 5,2:
+13.11707 kNm.

This last action completes the first round of the iterative procedure.
Allvalues of distributed and transferred moments of the first iterative
round are highlighted in bold letter type in Figure 5. The second
iteration round begins in the same way as the first one, by balancing
the remaining unbalanced moments of node 5 from the first iterative
round. The total unbalanced moment for node 5 for the second
iterative round is the sum of all transferred moments from nodes
3,4,6,7 and 8, from the first round. By multiplying this unbalanced
moment by division coefficients for node 5, balancing increments of
moments for the second iterative round are obtained. Unbalanced
moments in other nodes of the structure will be balanced in the
same order as in the first iterative round. Unbalanced moments are
the sum of the moments transferred from the previous iterative
round. The procedure in the second iterative round, including the
node balancing order, is completely identical to the first iterative
round. The same applies to all other subsequent iterative rounds.
The procedure ends with the iterative round for which the values of
all transferred moments are less than some predefined value.

In the numerical example shown, this predefined value is 0.1000
kNm, and so the procedure ends with the 5-th round.

Final moments for each cross section of the structure are
obtained as the sum of all distributed and all transferred
moments of all iterative rounds, without unbalanced
transferred moments of the last iterative round, which are
neglected. Therefore, the final values of the moments are
obtained by simply summing all the values of the column that
corresponds to the observed cross section in the calculation
scheme (Figure 6).

The final values of the moments, rounded to the fourth decimal
place, shown in the diagram in Figure 7, are obtained by summing
values obtained from the calculation scheme (Figure 6).

223443 50.8727

— '
/E 17.7916

64.3353

20.3230/ | 158219 65.8101

11.4559
36.1449 12.9307

22.5018

| 16.8529

79.02445

Figure 7. M diagram for numerical example solved according to MCP

4.2. Analysis by TCP for translationally movable
structures

To enable comparison with MCP, the solution of the same
numerical example was performed by TCP for translationally
movable structures.

The TCP will be conducted using steps described in [8], Section
7.1.2. However, some corresponding calculation parameters
are marked differently. The results are rounded to the fourth
decimal place, just like in MCP.

A restrained system in which all nodal rotations and all
independent translational displacements are prevented is
created (Figure 8): displacement of beam line of the 1-st floor u,
and displacement of beam line of the 2-nd floor u,.

7 8
RZ

= Jee

4 5 6 R
a ! 1

[] L] <«<—

1 2 3
7777 7777

Figure 8. Restrained system for numerical example according to TCP
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Using known expressions, fixed-end moments are obtained
at all cross sections of the restrained system: I\_ﬂ,'j. For all
cross sections of the restrained structure, these moments
are identical to the moments given in Section 3.1.

Using the already obtained stiffness coefficient values of
members of the structure, as presented in [8], the values of TCP
division coefficients are obtained:

for node &: p1, , = -0.2460, 1, , = -0,1845, 1, = -0.5695

for node 5: 41, , =-0.2801, 1, =-0.1182, 11, =-0.2735, 11, = -0.3282
for node 6: y, = -0.1684, u = -0.8316

for node 7: i, , = -0,6983, , , = -0.3017

for node 8: y;, = -0.6983, = -0.3017

In doing so, the expressions derived using static condensation

technique are used for member 3-6, provided that the
supporting moment in node 3 is equal to 0.

Using TCP (Figure 9), the moments in cross sections of the
restrained structure, caused by external load, are obtained:
Mi’j(O). The values of these moments are indicated in Figure 9
using bold letter type.
A known expression is used for the shear force value at the ends
of the member:
M. . +M..
i~ —— 4 T/(?)
1]
where T,/ is the value of shear force for a simply supported
beam caused by external load, and h; is the length of the
member i — j (in this case the height of the column i — j); shear
force values T (0) in the cross sections of the columns of the
restrained system are obtained from values of the moments
M,,(0).
Beam lines of individual floors are isolated by cutting all columns
of a particular floor and the floor above it, and by releasing shear
forces of the columns. Restraining force values of the restrained
system are obtained by applying equilibrium equations for the
horizontal forces acting on the isolated beam line (Figure 8): for
the 1-stfloor:R,(0)=P, - T, (0) =T ,(0) = T, (0) + T, ,(0) + T_,(O)
= 10.4488 kN, and for the 2-nd floor: R,(0)
=P, -T,,(0) -T,.(0)=37.8196 kN.
To determine values of previously
prevented displacements, joints are placed
in all nodes of the restrained system, and
appropriate displacement schemes are
created (Figure 10). The translational
displacement u, is set (Figure 10.a).
Values of fixed-end moments M,.'/.(u1),
= caused by displacementu1By, are obtained

using kn M/.y/.(u1) own expressions for fixed-

end moments at the ends of the member,
caused by rotation of the member, and,
in addition, using static condensation for
member 3-6 (Figure 11).

With these values as initial values, the TCP
is performed once again (Figure 11). IAt
the end of iterative TCP process (Figure 11),
A the moments caused by displacement u,:

Figure 9. Schematic view of TCP iterative procedure for numerical example according to TCP, M (u ) are obtained in cross sections of the

for external load

it
restrained system, as shown in Figure 11.

a) b) 4, 4,
@ "—@ [0} 7 O— 7
\ Wa7lu)=u,/3 \ ¥58(u)=u,/3 ! /
\ / /
\
\ I ywa7(u)=-u,/3 /
ARCH \ U, u, 2) 2 l II/SB(UZ)=-UZ/3
} T i q
/ / /
/ / /
/ / /
/ / /
" )= 4 " was(u )=, a Ya6lu)=-u /4

Figure 10. Displacement scheme for numerical example, for displacement u, and v,
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Figure 11. TCP iterative procedure for numerical example with translational displacement u,
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Figure 12. TCP iterative procedure for numerical example with translational displacement v,
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In accordance with the case already shown for external load, the
values of shear forces T‘,j(Uq) are obtained in cross sections of
the columns from the values of Mi,,-(UJ-

Just like in the case shown for external load, the values of
restraining forces of the restrained system are obtained by
applying equilibrium equations for horizontal forces acting on
the isolated beam lines (the difference being that there is no
contribution of forces P, and P, in the equilibrium equations): for
the 1-st floor: R,(u,) = -30701.4866-u,, for the 2-nd floor: R (u,)
=14981.8293.u,.

The translational displacement u, is also set (Figure 10 b)).

The values of moments m, (u,) caused by the displacement u,
are shown in Figure 12.

The TCP is performed again with these values as initial values
(Figure 12). At the end of the iterative TCP (Figure 12), the
moments are obtained in cross sections of the restrained
system caused by displacement u,: M, (u,). The values of these
moments are marked with bold letter type in Figure 12.

Just as in the case shown for displacement u,, the values of
restraining forces of the restrained system are obtained by
applying equilibrium equations for horizontal forces acting on
isolated beam lines: for the 1-st floor: R (u,) = 14982.0119-u,,
and for the 2-nd floor: R,(u,) =-13290.9937-u.,

The final values of restraining forces are obtained by summing
all the contributions:

R =R(0)+R(u,) +R(u,), wherei=1,2is the numbering for floors.
According to the fact that there are no restraints in the original
structure, the final value of each restraining force should be
equal to 0: R, = 0. Using this condition, the following equations
are obtained:

R, = 10.4488 — 30701.4866:u,  14982.0119-u,= 0
R, = 37.8196 + 14981.8293-u, — 13290.9937-u,. = 0

The obtained equations represent a system of two linear
algebraic equations with two unknows, where the unknows are
the required values of translational displacements of beam lines
of the structure.

By solving this system of equations, the following values of
required displacements are obtained: u, = 384.2629-10° miu,
=717.6981-10°m.

The final values of moments in cross sections of the structure
are obtained by summing all contributions:

Mi’j = MM(O) + Milj(u1) + Mi’j(uz). By including the obtained values
of translational displacements in this expression, the final
moments in all cross sections of the structure are obtained.
These results are shown in Table 1 along with the results of
other procedures.

4.3. Comparison of procedures
Table 1. shows the values of moments in cross sections of the

structure from numerical example shown in Figure 5 for TCP
and MCP.

Table 1. Comparative results of numerical example for MCP and TCP

Procedure
TCP McP
Cross section

M,, 22.4980 225018

s 79.0219 79.0244
M, 15.8159 15.8219
M, 20.3177 20.3230
M, -36.1336 -36.1449
M., 65.8209 65.8101
M., 11.4648 11.4559
M,, -64.4067 -64.3353
M, -12.8790 -12.9307
M,, 16.8432 16.8529
M, -16.8432 -16.8529
M,, 22.3419 22.3443
M, -22.3419 -22.3443
M, 50.8755 50.8727
M, -50.8755 -50.8727

The comparison of results shows that the largest relative
deviation of MCP results from TCP results is: 0.4014 %, and
the smallest relative deviation is: 0.0032 %, which is explained
by the accumulation of errors in the process of rounding of
individual results.

A comparison of MCP and TCP reveals significant advantages of
MCP over TCP: 1. Regardless of the number of floors and number
of spans of the frame structure, MCP reaches final solutions
after only one iterative procedure, while in TCP it is necessary
to perform (n+1) individual iterative procedures (where “n”
is the number of floors of the structure). This fact makes the
MCP evidently more time-efficient, more transparent, and
more effective procedure; 2. Unlike TCP, MCP does not need to
calculate shear forces in columns, nor to calculate restraining
forces, thus further reducing the time required for calculation,
and increasing efficiency compared to TCP; 3. The biggest
advantage of MCP over TCP is the complete elimination of linear
algebraic equations to find the values of unknown translational
displacements, where the procedure, from start to end, remains
in the domain of simplest mathematical procedures, reduced to
the simplest arithmetic operations with numbers.

If we analyse the number of steps required, i.e. the number of
individual sub-procedures within TCP, then it follows that TCP
contains the following sub-procedures: calculation of values of the
fixed-end moments and values of division and transfer coefficients;
iterative procedure performed (n+1) times; calculation of shear
forces values of columns, performed (n+1) times; calculation of
restraining values, performed (n+1) times; solving a system of n
linear algebraic equations with n unknowns; using obtained values
of translational displacements, and summation of all individual
contributions to obtain the final solution.
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Therefore, for an n-floor structure, it is necessary to perform 3
+3(n + 1) single steps (sub-procedures), if the design is carried
out using the TCP.

On the other hand, the MCP always contains only two individual
steps (sub-procedures): calculation of values of fixed-end
moments and values of division and transfer coefficients; an
iterative procedure which, regardless of the number of floors,
is always carried out only once. The advantage of MCP over TCP
in terms of the required number of steps (number of individual
sub-procedures) is more than obvious. For example, for the
frame structure with n = 5 floors: 3 + 3x(5 + 1) = 21 individual
steps (sub-procedures) are required to implement TCP, while
MCP (always) requires only two steps.

5. Conclusion

As shownin the paper, MCP has significantly improved TCPin the
design of in-plane movable structures. The basic idea of TCP to
achieve equilibrium state by successive calculation of distributed
and transferred moments within an iterative procedure, by
gradually approaching the correct solution, is retained in MCP as
well, with the exception that, unlike TCP, the equilibrium state is
achieved on a basic system that prevents nodal rotations, but
horizontal displacements of the nodes are not prevented (Figure
1.b). This significant difference in the choice of the basic system
results in completely different expressions for the division and
transfer coefficients of MCP compared to TCP.

In the modified procedure, the final solution is obtained after
only one iterative process, unlike traditional procedure, in which
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