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Structural health monitoring of beams with moving oscillator: theory and 
laboratory

In this paper, a new intelligent portable mechanical system is introduced experimentally 
and theoretically to detect damage employing the fuzzy-genetic algorithm and EMD. For 
this purpose, the acceleration-time history is obtained from three points of a simply-
supported beam utilizing accelerometer sensors. The gained signal is decomposed into 
small components by using an EMD method. Each decomposed component contains a 
specific frequency range. Finally, the proposed algorithm is designed to find the location 
and severity of damage through the frequency variation pattern among the safe and 
the damaged beam.
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Prethodno priopćenje

Reza Goldaran, Mehdi Kouhdaragh

Praćenje stanja greda pomoću pomičnog oscilatora: teorija i eksperiment

U ovom se radu daje eksperimentalni i teoretski prikaz novog inteligentnog prenosivog 
mehaničkog sustava za otkrivanje oštećenja u kojem se koristi neizraziti genetski algoritam 
i metoda empirijskog rastavljanja (EMD). Za te je potrebe akcelerometrima izmjereno 
ubrzanje u vremenu na tri točke proste grede. Dobiveni signal rastavljen je metodom 
EMD na male komponente. Svaka komponenta sadrži određeni raspon frekvencija. Na 
kraju je provedeno projektiranje predloženog algoritma kako bi se utvrdilo mjesto i razina 
oštećenja na temelju obrasca variranja frekvencija na neoštećenoj i oštećenoj gredi.

Ključne riječi:

otkrivanje oštećenja, sustav za generiranje vibracija, empirijsko rastavljanje, obrada signala, neizraziti 

genetski algoritam

Structural health monitoring of beams with 
moving oscillator: theory and laboratory
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1. Introduction 

Defects and failures in structures, which are detrimental of 
human life and financial resources, can be eliminated through 
structural damage identification methods that have been studied 
previously through the literature. Among these methods, modal 
analysis methods are very popular due to practicality. These 
methods are based on the fact that modal parameters (natural 
frequency, mode shape, and modal damping) depend on the 
physical parameters (mass, damping, stiffness) and therefore 
any changes in physical parameters can lead to a change in 
modal parameters of the structure [1-2]. Typically, primary 
data for the comparison can be derived from the measured 
data of the intact structure or the finite element model. The 
modal parameters used to identify structural defects include 
frequency function, natural frequencies, mode shape curvature, 
modal bending, and so forth [3-6]. Any damage detection 
system is divided into several sections such as damage 
identification, identification of damage location, damage rate 
detection, and prediction of the damaging lifetime. In order to 
obtain an efficient performance, the presence of a very precise 
mathematical modelling of the monitored systems is vital. 
Modelling errors can affect performance of damage detection 
systems, especially in nonlinear monitored systems. The use 
of computational intelligence methods may compensate the 
modelling errors to provide a good approximation of nonlinear 
systems. Lia Ding et al. at Western Australian University 
evaluated the dynamic vehicle axle loads on bridges with 
different surface conditions. The innovation of this study was 
the application of the “evolutionary spectral method” to assess 
dynamic loads of the vehicles on the beam moving on a rough 
surface of the beam at constant velocity [6]. Jean-Charles et al. 
at the Civil Engineering department of the University of Tokyo 
proposed a method for prediction of vehicle-induced local 
responses and application to a skewed girder bridge [7]. Law et 
al. worked on identification of the vehicle axle load on the bridge 
deck at the Hong Kong Polytechnic School of Engineering. The 
axial loads applied to the beam were estimated based on an 
irregular road surface profile [8]. Neves et al. at the University 
of Porto used a direct method for analysing the vertical vehicle–
structure interaction. Their proposed method is more suitable 
for systems with high structural volume than those that 
are constantly updated [9]. Law et al. studied the statistical 
prediction of the dynamic response of a beam structure with 
uncertain properties due to random passage of moving loads. 
The uncertain properties of the beam structure were assumed 
to be Gaussian and were modelled using the finite element 
method. The uncertain properties of the vehicle with Gaussian 
distribution were presented using the Karhunen–Loève 
Expansion. Na et al. used the Genetic Algorithm (GA) to detect 
stiffness changes in a twenty-story shear frame [11]. Marano 
et al. used the GA method to detect damage in a shear frame 
with incomplete measurements [12]. Mosquera et al. used GA 
to detect displacement changes on a two-span bridge in El 

Centro [13]. Loh et al. modelled a three-dimensional crack in a 
structure and used wavelet and Fourier transforms to identify 
damage in an RC frame employing a shake table test [14]. 
Ganguli et al. presented the damage as stiffness reduction in 
modulus of elasticity and detected the location and the severity 
of damage on a helicopter blade by using a fuzzy logic system 
[15]. Among modal parameters, natural frequency is the most 
commonly used since it can be easily and accurately measured. 
In the present study, a new intelligent portable mechanical 
system is proposed for damage detection in beam-shaped 
structures using the fuzzy-genetic algorithm. The advantages 
of this technique are as follows:
 - It could be applied for the mixed type of structures due to the 

system’s simplicity and efficiency.
 - The EMD (Empirical Mode Decomposition) method and 

Short-time Fourier Transform are utilized to extract natural 
frequency, which is different from previous works.

The current technique is able to identify the location and severity 
of damage in diverse modes. In this paper, a moving load 
including a concentrated mass and a linear elastic spring with 
constant velocity is used to excite a simply-supported beam 
dynamically. The acceleration-time history is extracted from 
three points of the beam by using the accelerometer sensors. 
To convert the acceleration-time history into usable information 
for damage identification, the EMD method is utilized. In this 
manuscript, the empirical method of signal decomposition into 
the main modes is firstly introduced and the capabilities of the 
method for damage detection are investigated. Then the signal 
components known as intrinsic mode functions (IMFs) gained 
by the EMD method are converted to the frequency range 
using the short-time Fourier transform method. The dominant 
frequencies of each IMF are used as features of the Fuzzy-
Genetic Algorithm (FGA) to detect the location and severity of 
damage in the structure.

2.  Modelling beam vibration system and moving 
oscillator

2.1. Equation of motion of moving oscillator

Figure 1 shows a moving oscillator that is a half-oscillator 
model with 4 degree of freedom with the constant speed n  on 
a simply supported beam. The free diagram of moving oscillator 
for Figure 1 is shown in Figure 2. The four degree of freedom of 
this moving oscillator include:
 - The vertical motion y1 of the unsprung mass m1

 - The vertical motion y2 of the unsprung mass m2

 - The vertical motion yn of the sprung mass mn  that is known 
as the vertical movement

 - Angular momentum θn of the sprung mass

This is the vibration system of the basic activation function 
that is provided by y3 and y4 displacements. All displacements 
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are measured against their static situation, and θn is considered 
to be small. The equations of motion of every four degree of 
freedom of the moving oscillator are modeled using Newton’s 
second law, which is obtained as follows after simplification: 

 
(1)

Because y3 and y4 values are not known, P(t) matrix can be 
defined as follows: 

 
(2)

Accordingly, P(t) is obtained from the sum total of static forces 
resulting from the moving oscillator and of the forces resulting 
from the beam-moving oscillator interaction.

In Equation (2), r(x) is the surface roughness of the beam at the 
point  x,  and   are the location of front and back axles 
of the moving oscillator, respectively, at the time t; g denotes 
the acceleration of gravity;  and  are the 

Figure 1. Coupled beam-moving oscillator system

Figure 2. Free diagram of moving oscillator
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vertical deflection of beam body at the points where the front 
and back forces are exerted, respectively, at the time t. Point (.) 
indicates the time derivative. The following notations are made 
to simplify the forms of equations of motion: 

 
(3)

Thus, Equation (3) may be rewritten as Equation (4) that is the 
equation of motion of the moving oscillator.  

 (4)

2.2. Equation of beam

Mass and stiffness matrices of beam elements are derived 
using the Hermit splines shape functions. The result for each 
element can be expressed as follows, Equations (5) and (6):

 (5)

 (6)

By integrating matrices for each element in a general matrix, 
the mass matrix and stiffness of the entire structure have been 
achieved. By considering the Rayleigh damping for beam and 
boundary conditions, the equation of the vibrating beam can be 
written as:

 (7)

In Equation (7), Mb, Cb and Kb are the matrices of mass, damping 
and stiffness of the beam structure, R and R’ and R’’ are the 
displacement, velocity and acceleration vectors, respectively. 
HbP  is equal to force vector on the node which comes from the 
interaction of the beam and the moving oscillator. By combining 
the Equations (7) of the beam and the moving oscillator, the 
vibration Equation (8) can be written as follows:

 (8)

M(t), C(t) and K(t) are the matrices of time-varying vibration 
system of the beam and the moving oscillator and F(t) is the 
force vector, Equation (9).

 
(9)

, Z,  are vectors of the displacement, velocity and acceleration 
of the beam vibrating system and the moving oscillator.
The Newmark-b method is used to obtain dynamic response 
of the nodes in the beam due to the passing of the moving 
oscillator. Then acceleration-time history is obtained from the 
beam midpoint. The signals are then decomposed into the 
main modes using the EMD method, as explained in the next 
section.

2.3. Properties of beams and moving oscillator 

A simply supported beam with a moving oscillator is used for 
this purpose. The beam is divided into 8 parts using the finite 
element method. Tables 1 and 2 shows geometric and physical 
properties of the beam and the moving oscillator.

Table 1. Properties of beams

Table 2. Properties of moving oscillator

3. EMD method

The EMD method is based on simple assumption that each 
signal consists of some fundamental components. According to 
this method, each signal can be decomposed into a number of 
signals that must satisfy the following conditions [16]:
 - The number of the zero crossings and the extrema are equal 

or differ at most by one, and
 - The average value of the local extrema and the minima of the 

envelopes is equal to zero.

These decomposed signals are called IMFs. In order to 
decompose the time domain signal and to gain IMFs, the 
following steps should be considered:
 - Determining all local maxima and minima of the signal.
 - Connecting the maxima points together using the cubic 

70 GPaYoung's modulus

200 mm2Cross-sectional area

820 mmLength of beam

Ix = 1666.67 mm4. 
Iy = 6666.67 mm4Moment of Inertia

2700 kg/m3Density

v = 2 m/s; mv = 0.5 kg; m1 = m2 = 0.05 kg; lv = 0.0083 m4

s = 0.05 m; a1 = a2 = 0.5 m; Ks1 = Ks2 = 490.5 N/m; Kt1 = Kt2 = 4900.5 N/m
Cs1 = Cs2 = Ct1 = Ct2 = 0.2; l = 0.000167 m4



Građevinar 7/2021

697GRAĐEVINAR 73 (2021) 7, 693-704

Structural health monitoring of beams with moving oscillator: theory and laboratory

spline interpolation technique and repeating the same 
procedure for the minima points.

 - Calculating the mean value of the function lines corresponding 
to the maxima and the minima of m1  and related difference 
with the value of the main input signal related to the 
vibrations x(t), which is set to h1 [16].

x(t) – m1 = h1 (10)

where h1 is the first member to be checked for IMF 
requirements. For this purpose, two above IMF conditions 
must be considered. If it is supposed as an IMF, h1 is 
separated from the original signal as of the first IMF and is 
called c1. The residue is called r1. Through the next step, r1 
is treated just like the original signal and the above process 
is repeated [16].

r1 = x(t) - c1 (11)

rn-1 - cn= rn (12)

If h1 is not an IMF, it should be treated as the original signal 
and the same steps (1 to 3) need to be iterated. The iteration 
continues till k-steps to make sure that is an IMF.

h1 - m11 = h11 (13)

c1= h1k (14)

This process of decomposition is supposed to be completed 
when the last residue rn has at most one local extremum [16].

 (15)

where n is the steps of the process and ε is considered to be 
between 0.2 and 0.3. If the function r satisfies the previously 
mentioned conditions, the algorithm stops, otherwise, the 
previous steps should be repeated. As the decomposition steps 
are passed, the main signal can be represented as follows [17-
19].

4. Short-time fourier transform (STFT)

In dealing with non-stationary signals, it can be assumed 
that there are some stationary components. If the 
stationary part of  the signal is too small, appropriate small 
size windows should be used. In this method, the signal is 
divided into small enough components that are supposed 
to be stationary. For this purpose, a step is chosen in which 
the width of the step is equal to the part of the signal that 
its stationary assumption is variable. This step is initially 

placed at the beginning of the signal t = 0. Assuming the 
step width as T seconds, at time t = 0, the step will cover the 
first T/2s of the signal. In the next step, a step is multiplied 
by the signal. If the step is supposed to be a rectangle with a 
value of 1, the product will be equal to the same part of the 
signal. This product is then processed as an independent 
signal by Fourier transform.

 (16)

where f(t) is the signal, w(t) is a window function (step), and * 
is the sign of complex conjugate of the function. If the signal 
separated from the main signal is stationary, its Fourier 
spectrum can be considered as an accurate representation of 
the frequency content of the first T/2 s of the signal. Then the 
step needs to move into the next part of the signal and the 
same procedure repeats. This process continues until the end 
of the signal.

5. Beam and moving load modelling

An aluminium beam 2 m in length and 20×10 mm in cross 
section is tested experimentally. Both ends of the beam are 
attached to two half-meter columns as shown in Figure 2. The 
self-weight of the aluminium beam and any applied loads are 
entered into the ball bearings at both ends which precisely 
have the same behaviour of simple joint support. A reverse 
vehicle is used to model the dynamic excitation system as 

shown in Figures 3 and 4 in the laboratory and schematically, 
respectively.
Figure 3. Simple support

According to Figure 4, the proposed vehicle consists of two 
Teflon-type wheels to be in contact with the beam during the 
experiment due to its self-weight. Two 0.5 kg masses called m1 
and m2, connected to a 2 kg mass by using two tensile springs, 
are attached to the wheels. The vehicle is driven by an electric 
motor including a gearbox at a constant speed of 1m/s, causing 
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vibration in the beam. The shape and location of cracks are 
presented in Figure 5.
Figure 4. Physical model of moving load

6. Extraction of vibration signals

To extract vibrational signals of the beam, three B&K 

Accelerometer Sensors (Type 4507) are installed at the upper 
part of the beam at 168, 94, 54 cm of the beam length. The 
test is implemented with a sampling frequency of 6.4 kHz, as 
the sensors have the capability of recording even the slightest 
vibrations. The vehicle is driven by an electric motor at a constant 
speed of 1m/s and passes the entire length of the beam to 
generate vibrations along the beam. The signals are stored by the 
accelerometers. To increase reliability, each test is repeated 20 
times. On the other hand, during each test, the signals extracted 
from all three sensors at different locations are repeated twenty 
times, and so generally 60 signals are gained for each damage 

scenarios. A scheme of the laboratory is shown in Figure 6.

Figure 6. Beam in laboratory

Figure 7. Acceleration time history for safe beam in first test

Figure 5. Location of crack in beam
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Three cracks, which are made by using low thickness saws, 
are placed on the beam at 1/4, 1/2 and ¾ of the length of the 
beam with damage intensities of 50 % and 80 % (d/h). The test 
is repeated twenty times on each one of the cracks. In the first 
case, the intact beam is tested by moving the vehicle twenty 
times over the beam at a constant speed of 1 m/s, and the 
acceleration results are stored in each experiment separately. 
The vehicle passage results are shown in Figures 7 and 8 for the 
intact beam.
As shown in Figures 7 and 8, the beam oscillated as the vehicle 
began to move along the beam, and the oscillations diminished 

with the passage of the vehicle to a non-vibrating state. By 
assessing the signals of the twenty experiments, it can be 
concluded that the system is reproducible. In the second case, 
the crack is placed at 1/2 of the length of the beam with 50 % 
and 80 % of damage and the same experimental procedure of 
the intact beam is repeated. The results of the test are stored 
for all twenty times of repetition distinctly. The results of the 
first two experiments with 50 % of damage intensity are shown 
in Figure 9. In the third and fourth cases, the cracks are placed 
at 1/4 and 3/4 of the length of the beam with 50 and 80 % 
of damage intensities. The same steps of vehicle passing are 

Figure 8. Acceleration time history for safe beam in second test

Figure 9. Acceleration time history for beam damage in first and second test
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repeated over the beam and the results are stored separately. 
However, the results are not presented due to similarities.
As illustrated in Figure 10, the acceleration signal obtained 
from the first experiment in the first sensor is converted to 

31 frequency ranges, and only the first five components are 
presented in this figure. 
Figure 10. IMFs extracted from acceleration time history signal 

According to Figure 11, the sum of the frequency range and 
frequency of the main signal fit perfectly. The results of the 
EMD are converted to the frequency range using the short-time 
Fourier transform method and then the dominant frequencies 
of each IMF are obtained, and are used as features for the 
FGA. It should be noted that at this stage thirty-one IMFs are 
gained from each signal. Then the dominant frequency of each 
component is obtained by using the Fourier transform. On the 
other hand, three signals are gained per test, and each of them 
includes 31 dominant frequencies. Lastly, 1860 frequencies are 

achieved by considering twenty repetitions in each case.

Figure 11.  Compliance of two frequencies from sum of 31 IMFs: a) 
the frequency of EMD; b) the frequency of original signal 

with PSD 

Since this number of features is too high for the FGA, only 
3 frequencies are extracted from each signal and, based on 
the current assumption, 9 frequencies are acquired. Also, as 
mentioned, the FGA must be trained and then verified after 
completing the test process and the percentage of the correct 
answers can be expressed. For this purpose, the first 10 tests are 
considered for algorithm training and the next 10 for the validation. 
The frequencies of the intact beam for the first experiment and 
the first sensor are illustrated in Figure 12 by using the short-time 
Fourier transform. It should be noted that the three-dimensional 

time-frequency-value figures are presented as two-dimensional 
frequency-value plots in Figure 12.
Figure 12.  STFT diagram of time-frequency value of intact beam for 

all IMFs in first test in sensor 1

7. Genetic-fuzzy algorithm

Based on the created membership functions, fuzzy logic (FL) is 
a high-capacity algorithm for the classification of data. Due to 
the FL requirement for the values of the mean and the standard 
deviation of data, which can be optimized by the GA, the 
combination of the FL and GA results in an efficient algorithm.

7.1. Damage indicator modelling

The damage indicator is considered as the difference between 
ninety dominant natural frequencies obtained from the short-time 
Fourier transform output for both intact and the damaged cases 
in the beam. This is defined in a non-dimensional form as follows:
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 (17)

where ∆ω is the frequency difference in non-dimensional form, 
ω(u) denotes the dominant natural frequency of the intact case, 
and ω(d) is the dominant natural frequency of the damaged case.

7.2. Damage detection system design

In this system, natural frequencies of each scenario are 
subtracted from the frequencies of the intact beam and then 
divided by the same intact case frequencies. The values   are 
normalized between zero and one as listed in Table 3. Therefore, 
one intact and six damaged scenarios are defined. The fuzzy 
system input is taken as the normalized frequency difference, 
and the output is defined as the location and severity of damage. 
However, the main objective is to find the relationship between 
the inputs and the outputs. The first step in defining the fuzzy 
system is fuzzification of the existing data into a linguistic 
expression. For this purpose, each normalized frequency 
difference is converted into five sections as shown in Table 4.
The next step is to define membership functions. A membership 
function is a function that is based on the input data, and a value 

between zero and one is specified for the output. In this paper, 
Gaussian membership functions are used for input variables. 
This function can be defined as follows:

 (18)

where m is the midpoint of the fuzzy function and δ is the 
standard deviation related to the variables. Gaussian fuzzy 
membership functions are very common in fuzzy systems. The 
midpoints for these functions must be chosen in such a way 
that the frequency range is covered appropriately.
The selection of standard deviation for fuzzy functions is highly 
important due to its great effects on the performance of the 
fuzzy system. A rule is specified to obtain the fuzzy rules by 
converting the numerical frequency difference into linguistic 
expressions at any location and severity of damage. Based 
on the membership function defined in the previous step, the 
degree of the membership associated with each frequency 
difference is gained.
Each frequency difference is assigned to a membership function 
with the maximum value. Following the above-mentioned 
process and considering the linguistic expressions defined in 
Table 2, seven rules are achieved as listed in Table 3. These rules 

Dω90 ... Dω2 Dω1 Intensity [%] Damage location

0.05 ... 0.15 0.49 50
in 50 cm

0.56 ... 0.29 0.53 80

0.67 ... 0.34 0.45 50
in100 cm

0.56 ... 0.56 0.65 80

0.09 ... 0.87 0.98 50
in 150 cm

0.34 ... 0.56 0.34 80

0-0.120.12-0.370.37-0.620.62-0.870.87-1

Very low (VL)Low (L)Moderate (M)High (H)Very high (VH)

Dω90 … Dω2 Dω1 Severity of the damage [%] Damage location

N … N N Safe Safe

VL … L M 50
in 50 cm

M … L M 80

H … L M 50
in 100 cm

M … M H 80

VL … H VH 50
in 150 cm

L … M L 80

Table 3. Normalized frequency difference between 0 and 1

Table 4. Fuzzy-Gaussian functions to fuzzify numerical values

Table 5. Fuzzy system rules
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can be interpreted for specific cases as follows:
If M, L, and VL are the first frequency difference, the second 
frequency difference, and the frequency difference of 90, 
respectively, the intensity of the damage in 50 cm of the length 
of the beam is equal to 50 %.
The rules related to other damage cases can be interpreted in 
the same way. As listed in Table 3, each rule has a unique effect 
which is completely different from other rules. Therefore, the 
defined fuzzy system can be considered as a good classifier. 
These rules generate basic knowledge and show how an expert 
uses the interpretation of frequency changes for damage 
detection.
After rules definition, the GA, which is highly different from 
traditional methods, is used for the optimization of membership 
functions. In this algorithm, the design space must be converted 
into a genetic space. Therefore, GA works with a set of coded 
variables. This algorithm is used in this manuscript to find the 
midpoints and the standard deviation of the specified fuzzy 
Gaussian functions. For this purpose, the cost function must 
first be defined for finding the minimum. The objective function 
is defined and described as follows:

 (19)

where α is the optimal output value of the fuzzy system and 
b is the actual output value of the fuzzy system. The optimal 
output is assumed in such a way that if the fuzzy system data 
is applied to a damage case, the related rule of the mentioned 
damage outputs the value one, and the other rules are taken 
as zero.
To produce the next generation based on the values obtained 
from the objective function, the best population of the present 
generation is copied at the rate of one. However, genetic parts 
of the algorithm should be used to produce the rest of the 
population. The crossover operator, which is used to combine 
the genetic information of two parents to generate new 
offspring, consists of three operations:
 - a pair of strings are selected randomly

 - a crossover point is chosen over the string
 - finally in the third step the offspring are created by 

exchanging the strings values based on the crossover point. 
In this manuscript, the rate is set to 8 to produce the child. 
Another operator in the GA is the mutation operator that is a 
random modification of a child through the population in which 
the rate of this operator is chosen as 2 in this paper. Therefore, 
the optimum value for the fuzzy midpoints and the standard 
deviation are gained after 100 iterations with the objective 
function value of 0.69.
For reliability assessment of the designed fuzzy system, the 
frequency difference values are utilized to define the system’s 
inputs. Also, to gain the fuzzy system output, the midpoint of 
fuzzy sets corresponding to the 90 frequency difference outputs 
is used as the fuzzy system output represented in Table 6. As 
per Table 6, the fuzzy system can produce the maximum value 
of one in each damage case. It means that the designed system 
meets the preliminary requirement for predicting the damage’s 
respective location and severity.
After the training stage, implemented and validated by the first 
ten experiments, the proposed method is applied for ten further 
tests not included in the training phase. The most significant 
point is that all signals in this stage are contaminated with 
noise to satisfy the real-world noisy signals condition. Similarly, 
the extracted properties, parameters and class numbers from 
the tests are considered the fuzzy system’s input and output, 
respectively. By comparing this class number with the correct 
class number in each simulation, the success rate SR can be 
calculated as follows:

 (20)

where N is the total number of the simulated samples and 
Nc is the number of the correctly detected samples in the 
corresponding class in Table 5. The value of the success rate for 
each damage case and the average success rate value are also 
listed in Table 5. In order to study the effect of the measured 
noise, different noise percentages are applied to the extracted 
features, and then the success rate value is presented for 

Output of 
Rules 7

Output of 
Rules 6

Output of 
Rules 5

Output of 
Rules 4

Output of 
Rules 3

Output of 
Rules 2

Output of 
Rules 1

Severity 
of the damage Damage location

0.32 0.97 0.08 0.63 0.76 0.34 1 Safe Safe

0.16 0.21 0.76 0.13 0.54 1 0.34 50 %
Damage in 50 cm

0.26 0.28 0.21 0.11 1 0.32 0.34 80 %

0.43 0.06 0.11 1 0.42 0.41 0.25 50 %
Damage in 100 cm

0.32 0.08 1 0.42 0.27 0.42 0.31 80 %

0.14 1 0.31 0.59 0.44 0.54 0.13 50 %
Damage in 150 cm

1 0.19 0.23 0.60 0.54 0.68 0.12 80 %

Table 6. Output of fuzzy rules with different frequency data
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each class. Obviously, noise can cause errors in the measured 
data. Although the use of modern equipment has reduced the 
noise, it can never be eliminated. Therefore, the fault detection 
system should not only work based on the ideal values but 
should also be capable of working in the presence of noisy data. 
In this study, uncertainties in modelling and measurement of 
noise are added to the frequency difference values. Equation 
12 is defined for this purpose in which the random number u 
is selected in the range of {-1,1} and α denotes the noise level 
[19]:

∆ωnoisy = ∆ω + αu (21)

The α parameter specifies the maximum variance between the 
value of ∆ω and the simulated value of ∆ωnoisy . For instance, if 
α = 0.1, the value of ∆ωnoisy can differ from the ∆ω value by ten 
percent. Therefore, α is used to control the noise level in the 
fuzzy system input data.
To assess performance of the damage detection system for 
each noise level, the noise is added into the frequency data of 
the beam by using Equation (12). Then the noise data is applied 
to the fuzzy system and the accuracy of the damage detection 
results is calculated. The rate of the correct results based on 

different levels of noise is listed in Table 5. 

Table 7. Amount of success rate (SR)
According to Table 7, at 0.05 of noise level, the damage detection 
is performed efficiently in all damage classes and is significantly 
successful. As the noise increases, as expected, the capability 
of the proposed method to successfully detect the damage 
classes is reduced, but it is still possible to identify the damage, 
which demonstrates the efficiency and high capability of the 
proposed methodology.
Table 7 shows the results from the second set of ten tests, 
including different noise levels. The results of the top rows of 
the table indicate the accuracy and robustness of the proposed 
technique.

8. Conclusion

In this study, a new portable intelligent mechanical system 
is introduced to detect damage in a beam structure by using 
the FGA. The proposed method is capable of detecting the 
location and severity of the damage. To obtain the features 
of the signals, the EMD method is used to decompose the 
acceleration-time history into its main components, each 
with a specific frequency range. Then, the short-time Fourier 
transform is utilized to extract the dominant frequency of each 
IMF as a feature for the FGA. The damage detection system 
is capable of detecting the location and severity of damage 
in all different scenarios, which is one of the advantages of 
the current study over previous researches. The following is 
suggested for prospective studies:

 - Using a more extensive moving load system (mass and 
spring) with a higher degree of freedom increases the 
accuracy of modelling and, thus, a more accurate study of 
the system’s dynamic response can be implemented.

 - Further innovative methods may be used to extract natural 
frequencies from the acceleration diagram for a more 
detailed study of this vibrational system.

α = 0.3 α = 0.2 α = 0.1 α = 0.05 Rule

81.9 88.3 91.2 98.3 1

76.4 81.3 89.4 99.3 2

70.3 74.3 81.3 97.4 3

69.9 76.6 85.5 98.5 4

71.1 86.6 90.4 96.8 5

61.2 71.2 88.4 92.5 6

REFERENCES
[1] Lotffolahi-Yaghin, M.A., Koohdaragh, M.: Examining the function of 

wavelet packet transform (WPT) and continues wavelet transform 
(CWT) in recognizing the crack specification. KSCE Journal of Civil 
Engineering, 15 (2011) 3, pp. 497-506, doi: 10.1007/s12205-
011-0925-2

[2] Araki, Y., Miyagi, Y.: Mixed integer nonlinear least-squares 
problem for damage detection in truss structures, Journal of 
Engineering Mechanics, 131 (2005) 7, pp. 659–667,doi: 10.1061/
(ASCE)0733-9399(2005)131:7(659) 

[3] Ge, M., Lui, E.: Structural damage identification using system 
dynamic properties, Computers & Structures, 83 (2005) 27, pp. 
2185–2196, doi: 10.1016/j.compstruc.2005.05.002 

[4] Jiang, L., Wang, K.: An enhanced frequency-shift-based damage 
identification method using tunable piezoelectric transducer 
circuitry, Smart Materials and Structures, 15 (2006) 3, pp. 799–
808, doi: 10.1088/0964-1726/15/3/016

[5] Lu, Z.R., Liu, J.K., Huang, M., Xu, W.H.: Identification of local 
damages in coupled beam systems from measured dynamic 
responses, Journal of Sound and Vibration, 326 (2009) 2, pp. 
177–189, doi: 10.1016/j.jsv.2009.04.028

[6] Lina Ding, Z., Hong Hao, R., Xinqun Zhu, I.: Evaluation of dynamic 
vehicle axle loads on bridges with different surface conditions, 
Journal of Sound and Vibration, 323 (2009) 4, pp. 826–848, doi: 
10.1016/j.jsv.2009.01.051



Građevinar 7/2021

704 GRAĐEVINAR 73 (2021) 7, 693-704

Reza Goldaran, Mehdi Kouhdaragh

[7] ean-Charles Wyss, H.O., Di Su, J., Yozo Fujino, T.: Prediction of 
vehicle-induced local responses and application to a skewed 
girder bridge, Engineering Structures, 3 (2011) 1, pp. 1088–1097, 
doi: 10.1016/j.engstruct.2010.12.020 

[8] Wu, S.Q., Law, S.S.: Vehicle axle load identification on 
bridge deck with irregular road surface profile, Engineering 
Structures, 33 (2011) 3, pp. 591–601, 2011.doi: 10.1016/j.
engstruct.2010.11.017

[9] Neves, S.G.M., Azevedo, A.F.M., Calçada, R.: A direct method for 
analyzing the vertical vehicle–structure interaction, Engineering 
Structures, 34 (2012) 12, pp. 414–420, Doi: 10.1016/j.
engstruct.2011.10.010

[10] Wu, S.Q., Law, S.S.: Evaluating the response statistics of an 
uncertain bridge–vehicle system, Mechanical Systems and 
Signal Processing, 27 (2012) 11, pp. 576–589, doi: 10.1016/j.
ymssp.2011.07.019

[11] Na, C., Kim, S., Kwak, H.: Structural damage evaluation using 
genetic algorithm, Journal of Sound and Vibration, 330 (2011) 12, 
pp. 2772–2783, doi: 10.1016/j.jsv.2011.01.007

[12] Marano, G., Quaranta, G., Monti, G.: Modified genetic algorithm for 
the dynamic identification of structural systems using incomplete 
measurements, Computer-Aided Civil and Infrastructure 
Engineering, 26 (2011) 2, pp. 92–110, doi: 10.1111/j.1467-
8667.2010.00659.x 

[13] Mosquera, V., Smyth, A., Betti, R.: Rapid evaluation and damage 
assessment of instrumented highway bridges, Earthquake 
Engineering and Structural Dynamics, 41 (2012) 4, pp. 755–774, 
doi: 10.1002/eqe.1155

[14] Loh, C., Mao, C., Huang, J., Pan, T.: System identification and 
damage evaluation of degrading ysteresis of reinforced concrete 
frames, Earthquake Engineering and Structural Dynamics, 40 
(2010) 6, pp. 623–640, doi: 10.1002/eqe.1051

[15] Ganguli, R.: A fuzzy logic system for ground based structural 
health monitoring of a helicopter rotor using modal data, Journal 
of Intelligent Material Systems and Structures, 12 (2001) 6, pp. 
397–407, doi: 10.1106/104538902022598

[16] Xianfeng, F., Mingzuo, J.: Gearbox fault detection using empirical 
mode decomposition, ASME International Mechanical Congress 
and Exposition, 12 (2004) 4, pp. 456-467, doi: 10.1016/j.
ymssp.2005.02.003

[17] Dejie, Y., Junsheng, Z., Cheng, Y., Yang Y.: Application of EMD 
method and Hilbert Spectrum to the fault diagnosis of roller 
bearings, Mechanical System and Signal Processing, 19 (2003) 3, 
pp. 259-270, doi: 10.1016/S0888-3270(03)00099-2 

[18] Huang, N.E.: The empirical mode decomposition and Hilbert 
spectrum for nonlinear and non-stationary time series analysis, 
Proceedings of the Royal Society A, 454 (2002) 5, pp. 903-995, 
doi: 10.1098/rspa.1998.0193

[19] Beena, P., Gangul, R.: Structural damage detection using 
fuzzy cognitive maps and Hebbian learning, Journal of Applied 
Soft Computing, 12 (2010) 3, pp. 132-144, doi: 10.1016/j.
asoc.2010.01.023


