Izvorni znanstveni rad

Primljen / Received: 20.3.2016. Ispravljen / Corrected: 28.6.2016. Prihvačen / Accepted: 22.7.2016. Dostupno online / Available online: 10.9.2016.

Ciklična ispitivanja jednorasponskih slabih okvira sa zidanom ispunom

Autori:

Dr.sc. Goran Gazić Sveučilište Josipa Jurja Strossmayera u Osijeku Građevinski fakultet ggazic@gfos.hr

Prof.dr.sc. Vladimir Sigmund

Goran Gazić, Vladimir Sigmund

Ciklična ispitivanja jednorasponskih slabih okvira sa zidanom ispunom

U radu su prikazani rezultati eksperimentalnih istraživanja četrnaest uzoraka jednorasponskih, jednoetažnih, neseizmički projektiranih armiranobetonskih (slabih) okvira sa zidanom ispunom, izvedenih u mjerilu 1:2. Uzorci su ispitani pod približno konstantnim vertikalnim i ravninskim horizontalnim cikličnim opterećenjem. Promatrani su različiti parametri uzoraka u pogledu geometrijskih i mehaničkih karakteristika armiranobetonskih okvira i zidane ispune. Na temelju provedenih ispitivanja predložene su jednadžbe za procjenu relativnog međukatnog pomaka pri promatranim graničnim stanjima.

Ključne riječi:

slabi armiranobetonski okviri, zidane ispune, eksperimentalna istraživanja, ponašanje uzoraka

Original scientific paper

Goran Gazić, Vladimir Sigmund

Cyclic testing of single-span weak frames with masonry infill

Experimental test results for fourteen samples of single-span, single-storey, nonseismically designed reinforced-concrete (weak) masonry infill frames are presented in the paper. The samples, scaled 1 to 2, were subjected to the approximately constant vertical and in-plane horizontal cyclic load. Various geometrical and mechanical properties of reinforced-concrete frames and masonry infill were considered. Equations for estimating the interstorey drift ratio at the limit states under study are proposed based on testing conducted in the paper.

Ključne riječi:

weak reinforced-concrete frames, masonry infills, experimental research, behaviour of samples

Wissenschaftlicher Originalbeitrag

Goran Gazić, Vladimir Sigmund

Zyklische Versuche an einfachen schwachen Rahmen mit Mauerwerksausfachung

In dieser Arbeit werden die Resultate experimenteller Versuche an 14 Proben im Massstab 1:2 ausgeführter, einfacher, einstöckiger, nicht für seismische Lasten ausgelegter (schwacher) Stahlbetonrahmen mit Mauerwerksaufachungen dargestellt. Die Proben wurden unter annähernd konstanten vertikalen und horizontalen zyklischen Lasten untersucht. Verschiedene Parameter in Bezug auf geometrische und mechanische Eigenschaften des Rahmens und der Mauerwerksausfachung wurden betrachtet. Aufgrund der durchgeführten Versuche wurden Gleichungen zur Abschätzung der relativen Stockwerksschiefstellung für die betrachteten Grenzzustände vorgeschlagen.

Ključne riječi:

schwache Stahlbetonrahmen, Mauerwerksausfachung, experimentelle Versuche, Verhalten von Versuchsproben

1. Uvod

Armiranobetonski okviri sa zidanom ispunom čine kompozitni nosivi sustav "*uokvireno ziđe*" čije je ponašanje pri horizontalnom seizmičkom opterećenju pod izrazitim utjecajem interakcije okvir-ispuna, što je i primijećeno nakon posljednjih značajnih potresa [1-5]. Zidana ispuna je imala i pozitivne (povećanje krutosti, nosivosti i disipacije energije konstrukcije) i negativne utjecaje (smanjenje graničnog relativnog međukatnog pomaka i povećanje opterećenja konstrukcije), ovisno o karakteristikama armiranobetonskog okvira i zidane ispune.

Značajan dio građevinskog fonda u seizmički aktivnim područjima diljem svijeta tvore armiranobetonski okviri projektirani za prijenos gravitacijskog opterećenja (slabi okviri), ispunjeni nearmiranom zidanom ispunom [6-8]. Tipične karakteristike takvih okvira su mala količina uzdužne armature u stupovima, nedostatna (mala) količina poprečne armature u područjima potencijalnih plastičnih zglobova, neduktilni čvorovi okvira, itd. [9-12]. Navedeni tip okvira sa zidanom ispunom je rijetko eksperimentalno istraživan [13-21] i postoji nedostatak seizmičkih smjernica [22] u pogledu njihove procjene, i posljedično, izbora metodologije ojačanja.

U okviru opsežnijeg eksperimentalnog istraživanja ispitano je 14 različitih uzoraka izvedenih u mjerilu 1:2. Uzorci su sadržavali jedno polje i jednu etažu zamišljene, slabe armiranobetonske okvirne konstrukcije ispunjene nearmiranom zidanom ispunom. Uzorci su opterećeni s približno konstantnim vertikalnim i ravninskim horizontalnim cikličnim opterećenjem te su sadržavali različite parametre, što je uključivalo mehaničke karakteristike zidane ispune i različite karakteristike vezane uz elemente okvira.

Rezultati su pokazali značajan doprinos zidane ispune ponašanju praznog okvira u pogledu povećanja krutosti, nosivosti i disipacije energije. Sam doprinos zidane ispune ovisio je o njezinim karakteristikama i karakteristikama armiranobetonskih okvira. Robusnost zidnih elemenata, definirana kao omjer neto i bruto površine poprečnog presjeka zidnog elementa, i tip morta pokazali su se kao vodeći parametri razine oštećenja zidane ispune i cjelokupnog ponašanja uzoraka. Negativni utjecaji zidane ispune na elemente okvira primijećeni su samo u slučaju uzorka kod kojeg je količina poprečne armature manja od one definirane u *Eurokodu 2* [23].

2. Eksperimentalna istraživanja

2.1. Uvod

Uzorci su (tablica 1. i slika 1.) podijeljeni u četiri različite skupine ovisno o karakteristikama armiranobetonskog okvira. Geometrijski omjer okvira, $\alpha = h/l$, zadržan je jednak za sve uzorke, dok je omjer momenata tromosti i količine armature (uzdužne i poprečne) stupova i greda okvira variran. Okviri su bili ispunjeni s pet različitih vrsta zidane ispune i projektirani za prijenos gravitacijskih opterećenja, s karakteristikama uobičajeno susretanim u praksi. Armiranobetonski okviri skalirani su u skladu sa zakonima sličnosti i proizvela ih je lokalna građevinska tvrtka.

Okvir	α	β	ρ _{ι,c} [%]	ρ _{ţc} [%]	ρ _{ι,b} [%]	ρ _{t,b} [%]
01	0,75	0,42	1,0	0,13	3,8	0,13 (0,07)
02	0,75	0,42	1,0	0,09	3,8	0,13 (0,07)
03	0,75	1,95	1,0	0,13	3,8	0,13 (0,07)
04	0,75	1,0	1,3	0,13	3,0	0,13 (0,07)

 ρ_{lc} i ρ_{tc} - koeficijent armiranja stupa uzdužnom i poprečnom armaturom; koeficijent armiranja poprečnom armaturom u srednjoj trećini duljine grede dan je u zagradi,

 ρ_{lb} i ρ_{tb} - koeficijent armiranja grede uzdužnom i poprečnom armaturom

Pri izvedbi zidane ispune primijenjene su dvije vrste zidnih elemenata:

- puni glineni zidni elementi (c, izmjera *b/h/l* = 120/65/250 *mm*)
- šuplji glineni zidni elementi (b grupa 2 prema Eurokodu 6
 [25], izmjera b/h/l = 120/90/250 mm).

Nadalje, upotrebljene su i dvije vrste morta:

- cementno-vapneni mort (pm s volumnim omjerom cement : vapno : pijesak =1:1:5)
- vapneni mort (vm s volumnim omjerom vapno:pijesak = 1:3).

Njihovom kombinacijom izvedeno je pet vrsta zidane ispune (tablica 2.). Zidana ispuna izvedena je s potpuno ispunjenim vertikalnim i horizontalnim sljubnicama približne širine/visine 1 *cm*. Osim postignute adhezije, nisu korištena dodatna spojna sredstva između okvira i ispune. Zidni elementi i sljubnice morta nisu skalirane u skladu sa zakonima sličnosti uslijed tehničkih prepreka.

Visina šupljih glinenih zidnih elemenata skalirana je u skladu s mjerilom kako bi se zadržao jednak broj horizontalnih sljubnica kao i kod prototipa. Puni zidni elementi nisi uopće skalirani. Prema [26], skaliranje punih zidnih elemenata do mjerila 1:3 ne utječe na horizontalnu nosivost i mehanizam oštećenja ispitnih uzoraka.

Tablica 2	Karakteristike	zidane	ispune
-----------	----------------	--------	--------

Zidana ispuna	Oznaka	Zidni element	Vrsta morta		
laka	срт	puni glineni (c)	cementno-vapneni (pm)		
Juku	bpm	šuplji glineni (<i>b</i>)	cementno-vapneni (pm)		
	bvm	šuplji glineni (<i>b</i>)	vapneni (<i>vm</i>)		
Slaba	сут	puni glineni (c)	vapneni (<i>vm</i>)		
	b	šuplji glineni (b)	bez morta		

Slika 1. Uzorci armiranobetonskih okvira

Tablica 3. Ispitni uzorci

Uzorak	Tip okvira	Zidni element	Vrsta morta
01+	01	-	-
O1_bpm	01	šuplji glineni	cementno-vapneni
01_bpm*	01	šuplji glineni	cementno-vapneni
O1_cpm	01	puni glineni	cementno-vapneni
O1_bvm	01	šuplji glineni	vapneni
O1_cvm⁺	01	puni glineni	vapneni
01_b	01	šuplji glineni	-
O2_cpm	02	puni glineni	cementno-vapneni
03	03	-	-
O3_bpm	03	šuplji glineni	cementno-vapneni
O3_cpm	03	puni glineni	cementno-vapneni
04	04	-	-
O4_bpm	04	šuplji glineni	cementno-vapneni
O4_cpm	04	puni glineni	cementno-vapneni
*Sanirani uzorak			

Kombiniranjem navedenih karakteristika armiranobetonskih okvira i zidane ispune izvedeno je ukupno 14 uzoraka (tablica 3.). Dodatno, uzorak *O1_b* izveden je s okvirom skupine *O1* i ispunjen šupljim glinenim zidnim elementima bez morta, dok se uzorci *O1_bpm* i *O1_bpm** razlikuju jedino u pogledu povijesti opterećenja (razlike su prouzročene pogreškom prilikom nanošenja opterećenja).

2.2. Program ispitivanja i mjerna oprema

Uzorci su ispitani unutar horizontalno pridržanog, čeličnog reaktivnog okvira pričvršćenog na krutu temeljnu ploču. Temeljne grede uzoraka pričvršćene su na reaktivni čelični okvir vijcima, a eventualno klizanje je spriječeno dodatnim čeličnim ukrutama. Provedena su ispitivanja uzoraka pod približno konstantnim vertikalnim i ravninskim horizontalnim cikličnim opterećenjem do sloma. Vertikalno opterećenje, koje je uzrokovalo približno 30-40 % projektirane tlačne čvrstoće betona, nanošeno je na stupove okvira hidrauličnom prešom i kliznim ležajevima

Slika 2. Prikaz opreme, rasporeda mjernih uređaja i povijesti opterećenja ispitnih uzoraka

Karakteristike materijala armiranobetonskih okvira								
Beton <i>C16/20</i>	Uzdužna arr	natura <i>S500</i>	Poprečna armatura <i>S220</i>					
Karakteristike zidane ispune								
	Ziđe s cementno-v	/apnenim mortom	Ziđe s vapnenim mortom					
	Šuplji glineni zidni elementi	Šuplji glineni zidni elementi Puni glineni zidni elementi Šuplji glineni zidni elementi Puni glineni						
f _{mt} [MPa]	1,3	1,3	0,1	0,1				
f_m [MPa]	5,1	5,1	0,5	0,5				
f/f _b [MPa]	18,8/21,1 20,4/19,6		18,8/21,1	20,4/19,6				
$f_i[MPa]$	4,6	5,2	0,8	3,5				
f_t [MPa]	0,16	0,20	0,05	0,10				
E[MPa]	8188	1665	1766	1653				
f _{vo} [MPa]	0,42 (0,25)	0,18 (0,32)	0,13 (0,08)	0,04 (0,16)				
<i>tga.</i> 0,32 0,56 0,21 0,57								
mi f _m - vlačna i tlačna čvrstoća morta, fi f _b - tlačna i normalizirana tlačna čvrstoća zidnih elemenata, f, f _r E - tlačna, vlačna čvrstoća i modul elastičnosti ziđa, z tgα - početna posmična čvrstoća (kohezija) i kut unutarnjeg trenja ziđa. Sve vrijednosti prikazane u tablici 4. su srednje vrijednosti ispitivanja.								

Tablica 4. Mehaničke karakteristike primijenjenih materijala

pomoću kojih je omogućen horizontalni pomak i spriječena metode ispitivanja na dobivene rezultat

rotacija. Horizontalno ciklično ravninsko opterećenje nanošeno je kroz težišnu os greda pomoću dvije hidraulične preše (slika 2.). Prilikom opterećenja uzoraka primijenjena je kontrola sile u koracima od 10 kN u području malih deformacija i kontrola pomaka s postupnim povećanjem vrijednosti amplitude. Svaki ciklus opterećenja ponovljen je dva puta kako bi se obuhvatio utjecaj degradacije nosivosti i krutosti na ponašanje uzoraka. Mjerena su opterećenja na svim točkama unosa sila pomoću pretvarača sile, horizontalni pomaci oba kraja grede, te dijagonalne deformacije okvira i zidane ispune pomoću LVDT-a. Mjerač pomaka visoke rezolucije korišten je za promatranje eventualnih pomaka temeljnih greda uzoraka. Svi mjereni podaci su kontinuirano prikupljani s učestalošću uzorkovanja od 0,01 s pomoću DEWE-30-16 sustava uz DEWESoft ver. 6.6.7. programsku potporu. Nastanak i širenje pukotina praćeno je vizualno i 3D optičkim mjernim sustavom ARAMIS.

3. Rezultati eksperimentalnih istraživanja

3.1. Mehaničke karakteristike primijenjenih materijala

Sve mjerene mehaničke karakteristike primijenjenih materijala određene su u skladu s europskim normama i prikazane u tablici 4. Korišten je beton klase *C16/20* prema [27] te glatki čelik za poprečnu (*S220*) i rebrasti čelik za uzdužnu armaturu (*S500*), prema [28, 29]. Sve promatrane karakteristike ziđa ispitane su prema [30]. Posmična čvrstoća ziđa određena je na temelju posmičnog ispitivanja tripleta (tip A) i dijagonalnim tlačnim ispitivanjem. Rezultati prikazani u zagradi se odnose na vrijednosti posmične čvrstoće određene dijagonalnim tlačnim ispitivanjem. Prikazani rezultati pokazuju značajan utjecaj metode ispitivanja na dobivene rezultate. Posmične čvrstoće određene ispitivanjem tripleta (u literaturi uobičajeno definirana kao kohezija) izvedenih od šupljih glinenih zidnih elemenata su veće od onih dobivenih dijagonalnim tlačnim ispitivanjem. Odstupanja su bila očekivana s obzirom na to da su metode ispitivanja temeljene na različitim oblicima sloma ispitnih uzoraka, ali razlike su neočekivane. Osim toga, kod uzoraka ziđa izvedenih od punih glinenih zidnih elemenata, vrijednosti vlačne čvrstoće određene na temelju dijagonalnog tlačnog ispitivanja su veće od posmične čvrstoće određene ispitivanjem tripleta. Ovo je bilo neočekivano i opravdano je različitim mehanizmom sloma ispitnih uzoraka i različitom teksturom naliježućih površina zidnih elemenata.

Dobivene vrijednosti čvrstoća ispitanih uzoraka ziđa upućuju na dominantan utjecaj robusnosti zidnih elemenata i vrste morta. Svi uzorci izvedeni od cementno-vapnenog morta imali su veće vrijednost čvrstoća u odnosu na uzorke s vapnenim mortom i svi uzorci s punim glinenim zidnim elementima imaju veće vrijednosti promatranih mehaničkih karakteristika, osim modula elastičnosti, u odnosu na uzorke izvedene od šupljih glinenih zidnih elemenata.

3.2. Mehanizmi oštećenja

Mogući mehanizmi oštećenja zidane ispune i armiranobetonskog okvira, prikazani slikama 3. i 4. (prema [31, 32]), povezani su s tri uočena karakteristična granična stanja ispitanih uzoraka. Za elemente *uokvirenog ziđa* promatrana su i definirana sljedeća granična stanja (*LS*):

<u>LS_1: Pojava prve značajne pukotine</u>, određena s parom vrijednosti *BS*_c, i *IDR*_c, Prva značajna pukotina definirana je kao prva pukotina koja prolazi kroz najmanje četiri sloja zidnih elemenata (približno jedna trećina visine zidane ispune), ili kao

Gradevinar 8/2016

Goran Gazić, Vladimir Sigmund

Slika 4. Mehanizmi oštećenja armiranobetonskog okvira, [32]

prva pukotina koja se prostire najmanje jednom polovinom visine stupa okvira.

<u>LS_2:</u> Pojava tečenja, određena s parom vrijednosti *BS_y* i *IDR_y* definirana s pojavom prve pukotine koja prolazi čitavom visinom/duljinom zidane ispune, ili prvim korakom opterećenja kod kojeg su se spojile pukotine iz nasuprotnih uglova uzorka. Za armiranobetonski okvir pojava tečenja definirana je s pojavom prve pukotine koja prolazi punom visinom stupa, ili prvim korakom opterećenja kod kojeg dolazi do spajanja pukotina sa suprotnih lica stupa okvira.

<u>LS_3</u>: Gubitak kompozitnog djelovanja, određen parom vrijednosti BS_f i IDR_f definiran kao slom jedne od komponenti sustava (okvir ili zidana ispuna) tj. kao korak opterećenja kod kojeg više ne postoji kompozitno djelovanje.

BS (eng. *Base Shear*) i *IDR* (eng. *Inter-story Drift Ratio*) predstavljaju horizontalnu nosivost uzorka i relativni međukatni pomak pri pojavi pojedinog graničnog stanja.

Odabirom navedenih graničnih stanja omogućen je kvalitativan i kvantitativan opis odgovora ispitanih uzoraka, čije se primarne krivulje mogu prikazati pomoću slike 5.

Slika 5. Primarna krivulja odgovora i promatrana granična stanja ispitnih uzoraka

Najveća horizontalna nosivost svih uzoraka izvedenih sa šupljim glinenim zidnim elementima postignuta je pri pojavi graničnog stanja *LS_2*, dok je kod uzoraka izvedenih od punih glinenih zidnih elemenata to uočeno pri pojavi graničnog stanja *LS_3*. Veza između promatranih graničnih stanja ispitanih uzoraka i mehanizama oštećenja prikazana je u tablici 5.

Tablica 5. Međuovisnost promatranih graničnih stanja (*LS*) i mehanizama oštećenja

Uzorak	LS_1	LS_2	LS_3
01+	ТС	ТС	SC
O1_bpm	DC	СС	CC (slom ispune)
O1_bpm*	DC	СС	CC (slom ispune)
O1_cpm	SS	HSS	<i>SC</i> (slom okvira)
O1_bvm⁺	DC	HSS	CC (slom ispune)
O1_cvm	SS	HSS	<i>SC</i> (slom okvira)
O2_cpm	SS	HSS	<i>SC</i> (slom okvira)
03	ТС	ТС	SC
O3_bpm	DC	SS	CC (slom ispune)
O3_cpm	SS	HSS	<i>SC</i> (slom okvira)
04	ТС	ТС	SC
O4_bpm	DC	55	<i>CC</i> (slom ispune)
04_ <i>cp</i> m	55	HSS	<i>SC</i> (slom okvira)

Uzorak *O1_b* je izostavljen zato što je, unatoč relativno velikom relativnom međukatnom pomaku od 1,7 %, uočena samo pojava graničnog stanja *LS_1*. Konačno oštećenje svih uzoraka pri maksimalnim relativnim međukatnim pomacima prikazano je slikom 8.

Općenito, tijekom ispitivanja su uočeni višestruki mehanizmi oštećenja, što je ovisilo o veličini postignutog relativnog međukatnog pomaka (*IDR*%) pri opterećenju. Karakteristike zidane ispune, točnije robusnost zidnih elemenata i vrsta morta, proizašli su kao osnovni parametri oštećenja ispune kao i cjelokupnog odgovora ispitnih uzoraka.

Kod uzoraka izvedenih sa šupljim glinenim zidnim elementima, pri pojavi LS_1, dolazi do dijagonalno tlačnog mehanizma oštećenja u obliku dijagonalne pukotine smještene u gornjim uglovima uzoraka i orijentirane pod nagibom od 65° do 70°, od približno pola visine stupa. Pri pojavi LS_2 kod uzoraka skupine O1 dolazi do pojave drobljenja uglova (dijelova ispune definiranih pojavom LS_1), što je i nastavljeno do pojave LS_3. Središnji dijelovi zidane ispune ostali su neoštećeni. Iako izvanravninska ispitivanja nisu provedena, može se zaključiti da je na osnovi razine oštećenja (slika 6.) izvanravninska stabilnost zidane ispune značajno ugrožena.

I kod uzoraka skupine O3 i O4 izvedenih sa šupljim glinenim zidnim elementima, LS_1 je definiran kao i kod skupine O1, međutim kod LS_2 dolazi do pojave spajanja pukotina nastalih u dijagonalno nasuprotnim uglovima ispune u smjeru vertikalnih i horizontalnih sljubnica (oblik oštećenja SS). U pogledu globalnog odgovora uzoraka uočena promjena oblika oštećenja nije uzrokovala značajne promjene u ponašanju ispitnih uzoraka. Neovisno o karakteristikama okvira i zidane ispune (jaka ili slaba), drobljenje ispune se pokazalo kao dominantan mehanizam oštećenja pri pojavi LS_3, lokalizirano na kontaktu okvir-ispuna i duž plohe sloma ispune, kao što je prikazano na slici 6. Ovo drobljenje ispune uzrokovalo je značajnu degradaciju nosivosti uzoraka, izgubljeno je kompozitno djelovanje i pri relativnim međukatnim pomacima od približnih 1 % dolazi do neovisnog ponašanja okvira.

Slično ponašanje uočeno je i kod jakih (seizmički projektiranih) okvira s ispunom izvedenom od šupljih glinenih zidnih elemenata [33]. Suprotno, kod svih uzoraka izvedenih od punih glinenih zidnih elemenata ispuna je zadržala zadovoljavajuću cjelovitost tijekom provedenih ispitivanja. Granična stanja LS_1 i LS_2 definirana su posmičnim mehanizmom oštećenja, gdje je uočen prijelaz iz SS u HSS oblik, kao što je prikazano slikom 7. Kako nije došlo do pojave drobljenja ispune, ona je zadržala cjelovitost čime je osigurano sudjelovanje u prijenosu opterećenja do pojave graničnog stanja *LS_3*. Kod uzoraka skupine *O1* i *O2*, *LS_3* nastaje uslijed pojave sloma stupa, dok je kod uzoraka skupine *O3* i *O4*, *LS_3* definiran pojavom posmičnog sloma grede okvira.

Konačni slom svih uzoraka praznih armiranobetonskih okvira uzrokovan je posmičnim slomom jednog od stupova. Robusna zidana ispuna (puni glineni zidni elementi) osigurala je preraspodjelu sila unutar elemenata sustava, čime se pridonijelo općoj stabilnosti ispune, ali i horizontalnoj nosivosti uzoraka.

Slika 6. Oštećenje zidane ispune izvedene od šupljih glinenih zidnih elemenata (uzorci 01_bpm i 03_bpm)

IDR = 0,15 %

IDR = 0,5 %

IDR = 1 %

Slika 7. Prikaz prijelaza mehanizma oštećenja ispune kod uzoraka izvedenih od punih glinenih zidnih elemenata (uzorak *O3_cpm*, kvantitativan prikaz deformacija, *ARAMIS*)

Usporedbom mehanizama oštećenja ispitanih uzoraka definiranih u tablici 5 i čvrstoća ziđa u tablici 4, može se uspostaviti procjena mehanizma oštećenja pri pojavi LS_1. Kod ziđa izvedenog od šupljih glinenih zidnih elemenata, neovisno o vrsti morta, vlačna čvrstoća određena dijagonalnim tlačnim ispitivanjem je manja od posmične čvrstoće određene ispitivanjem tripleta, i obrnuto u slučaju punih glinenih zidnih elemenata. Definiranjem odnosa navedenih čvrstoća, vidljivo je da u slučaju vrijednosti veće od 1 dolazi do pojave DC mehanizma oštećenja, dok u slučaju vrijednosti manje od 1 dolazi do pojave SS mehanizma oštećenja. Ova opažanja zahtijevaju dalinia ispitivanja s različitim vrijednostima omjera čvrstoća pokrivenih provedenim ispitivanjem, posebno u slučaju šupljih glinenih zidnih elemenata (f_{ra}/f_{t} =2,6). Nažalost, za LS_2 se ne može uspostaviti ista logika. Pojava različitih mehanizama oštećenja pri LS_2 pripisana je različitim karakteristikama armiranobetonskih okvira i vrsti morta. Iz usporedbe mehanizama oštećenja uzoraka 01_bpm i 01_bvm proizlazi utjecaj vrste morta. Slično, usporedbom mehanizma oštećenja uzoraka O1_bpm i O3_bpm utjecaj karakteristika okvira, točnije koeficijenta β (omjer momenata tromosti elemenata okvira) postaje očit. Utjecaj koeficijenta β može se objasniti pomoću teorije "grede na elastičnoj podlozi". Povećanje vrijednosti koeficijenta β uzrokovat će povećanje vrijednosti relativne krutosti stupa okvira u odnosu na zidanu ispunu, uzrokujući promjenu naprezanja unutar tog okvira. Unatoč pokušajima, veza između vrste morta i koeficijenta β na pojavu pojedinog mehnizma oštećenja pri LS_2 nije uspostavljena.

U tablici 6. prikazane su reprezentativne vrijednosti relativnih međukatnih pomaka pri promatranim graničnim stanjima, u ovisnosti o vrsti zidane ispune. Navedene vrijednosti ovisile su o karakteristikama zidane ispune, točnije, o robusnosti zidnog elementa i vrsti morta. U slučaju jakog ziđa, pojava *LS_1* je uočena pri vrijednosti *IDR* od približnih 0.15 % neovisno o vrsti zidnog elementa. Pojava *LS_2* uočena je pri vrijednosti *IDR* od približnih 0,30 % kod uzoraka sa šupljim i približnih 0.5 % kod uzoraka s punim glinenim zidnim elementima. *LS_3* je uočen pri vrijednosti *IDR* od približnih 1 % za šuplje i 1,5 % za uzorke s punim glinenim zidnim elementima.

U slučaju slabog ziđa, srednje vrijednosti relativnih međukatnih pomaka pri *LS_1* su približno upola manje od onih kod jakog ziđa, i u intervalu od 0,06 % do 0,85 % sa srednjom vrijednošću od 0,073 %. U slučaju *LS_2* vrijednosti relativnih međukatnih pomaka su bile približno 0,15 %, neovisno o vrsti zidnog elementa. Pri *LS_3* usvojene su jednake vrijednosti kao i kod jakog ziđa, ovisno o vrsti zidnog elementa.

Tablica 6. Reprezentativne vrijednosti relativnih međukatnih pomaka pri promatranim graničnim stanjima

Ispuna	Jaka zida	na ispuna	Slaba zidana ispuna			
Granična stanja	Šuplji zidni elementi	Puni zidni elementi	Šuplji zidni elementi	Puni zidni elementi		
LS_1[%]	0,15	0,15	0,07	0,07		
LS_2[%]	0,3	0,5	0,15	0,15		
LS_3[%]	1,0	1,5	1,0	1,5		

3.3. Histerezne i primarne krivulje odgovora ispitanih uzoraka

Mjerene histerezne krivulje, primarne krivulje odgovora i pukotinsko stanje svih ispitanih uzoraka pri zadnjem koraku opterećenja prikazane su slikom 8. Horizontalne nosivosti tj. *BS* (eng. *Base Shear*) i pripadni relativni međukatni pomaci (*IDR*) svih ispitanih uzoraka, pri promatranim graničnim stanjima, prikazani su u tablici 7. za oba smjera opterećenja. Pozitivan smjer opterećenja definiran je pozitivnim parovima vrijednosti *BS* i *IDR*. Uzorak *O1_b* je izostavljen zato što je tijekom ispitivanja uočena samo pojava *LS_1. BSR* (eng. *Base Shear Ratio*, sekundarna ordinata) predstavlja omjer horizontalne nosivosti i vertikalnog opterećenja (težine) pri pojedinom koraku opterećenja.

Tablica 7. Horizontalna nosivost (BS) i relativni međukatni pomak (IDR) uzoraka pri promatranim graničnim stanjima

	Smjer opterećenja +						Smjer opterećenja -					
Uzorak	LS	1	LS	_2	LS	_3	LS	_1	LS	_2	LS	_3
	BS _c	IDR _a	BS,	IDR,	BS,	IDR _f	BS _{cr}	IDR _{cr}	BS	IDR _v	BS _f	IDR _f
+01	28,1	0,19	43,3	0,81	46,7	1,31	29,1	0,31	37,5	0,88	-	-
O1_bpm	101,5	0,09	160,0	0,27	116,2	0,85	109,5	0,13	155,4	0,27	86,8	1,04
O1_bpm*	105,6	0,08	170,6	0,27	94,2	1,00	97,0	0,15	141,5	0,31	83,8	0,88
O1_cpm	139,7	0,16	187,2	0,39	-	-	136,2	0,17	155,5	0,41	162,2	1,70
01_bvm	71,0	0,06	78,7	0,08	39,7	1,00	66,2	0,06	78,8	0,16	48,5	1,06
+01_cvm	70,8	0,08	79,1	0,16	81,2	1,80	69,4	0,09	76,6	0,18	-	-
O2_cpm	118,6	0,16	149,5	0,41	-	-	120,1	0,15	145,5	0,46	152,7	0,99
03	94,8	0,23	142,5	0,96	-	-	105,3	0,43	130,5	1,07	103,0	1,62
O3_bpm	152,1	0,12	219,2	0,28	191,1	0,89	171,4	0,19	219,8	0,38	174,0	1,03
O3_cpm	148,9	0,15	279,9	0,50	-	-	180,0	0,19	280,2	0,56	298,9	1,35
04	88,9	0,31	127,5	0,78	120,3	1,20	65,8	0,15	113,5	0,86	-	-
O4_bpm	200,9	0,16	258,5	0,28	184,7	0,93	219,6	0,20	258,8	0,29	172,0	0,94
O4_cpm	149,9	0,24	179,9	0,50	-	-	101,4	0,08	169,9	0,43	227,1	1,62

Gradevinar 8/2016

Slika 8. Histerezno ponašanje, primarne krivulje odgovora i pukotinsko stanje ispitanih uzoraka

Efektivna elastična krutost, K_{EL} , ispitanih uzoraka definirana je pojavom LS_1. Doprinos zidane ispune efektivnoj elastičnoj krutosti praznog okvira ovisio je o njegovim karakteristikama. Povećanje momenta tromosti stupa okvira, što je zapravo povećanje koeficijenta β , uzrokovalo je smanjenje doprinosa ispune. Posljedično, najveći doprinos zidane ispune uočen je u slučaju uzoraka skupine O1. U usporedbi s efektivnom elastičnom krutosti praznog okvira skupine O1, kod uzoraka sa zidanom ispunom izvedenim od šupljih glinenih elemenata uočeno je povećanje od 8,8 (od 8,1 do 9,5) puta. Iznenađujuće, najveći doprinos (9,5 puta) uočen je u slučaju uzorka s vapnenim mortom. Ovo se može opravdati znatno manjim vrijednostima pripadnog relativnog međukatnog pomaka pri LS_1 u odnosu na uzorak s cementno-vapnenim mortom. Kod uzoraka s punim glinenim zidnim elementima zabilježeno je povećanje efektivne elastične krutosti u iznosu od 6,9 puta u odnosu na prazan okvir. Kod uzorka O3 izvedenog sa šupljim glinenim zidnim elementima zabilježeno je povećanje efektivne elastične krutosti u iznosu od 3,3, a kod uzorka s punim glinenim zidnim elementima od 2,9 puta. U slučaju skupine uzoraka *O4* uočen je sličan trend, povećanje efektivne elastične krutosti u iznosu od 3,3 puta kod uzorka sa šupljim glinenim zidnim elementima i 2,6 puta kod uzorka s punim glinenim zidnim elementima. Varijacija uzdužne armature u stupovima nije, za razliku kod praznih okvira, imala znatan utjecaj na efektivnu elastičnu krutost zato što je odgovor uzoraka bio pod dominantnim utjecajem zidane ispune.

Prema tablici 4., niti jedna od ispitanih čvrstoća, kao i modula elastičnosti, ne može biti direktno povezana s uočenim povećanjem efektivne elastične krutosti uzoraka. Međutim, ako se promotri utjecaj zidnog elementa, vidljivo je određeno pravilo. Kod svih uzoraka s ispunom izvedenom od šupljih glinenih zidnih elemenata, kao i kod uzoraka s punim glinenim zidnim elementima, uočena je približno jednaka vrijednost efektivne elastične krutosti. Tako je kod uzoraka sa šupljim glinenim zidnim elementima ona bila u intervalu od 70 *kN/mm* do 85 *kN/mm*, a kod uzoraka s punim glinenim zidnim elementima u intervalu od 59 *kN/mm* to 69 *kN/mm*. Više vrijednosti intervala odgovaraju uzorcima skupine *O3* i *O4*.

Doprinos zidane ispune horizontalnoj nosivosti praznih okvira također je ovisio o karakteristikama okvira i ispune te o vrijednosti relativnog međukatnog pomaka. Unatoč činjenici da, kao i u slučaju efektivne elastične krutosti, niti jedna čvrstoća ispune ne može biti direktno povezana s doprinosom horizontalnoj nosivosti, ovdje se ističe utjecaj vrste morta i robusnosti zidnih elemenata. Utjecaj tipa morta na horizontalnu nosivost uzoraka sa šupljim glinenim zidnim elementima skupine *O1* prikazan je slikom 9.

Slika 9. Utjecaj vrste morta na horizontalnu nosivost (*BS*) uzoraka skupine *01*

Maksimalna horizontalna nosivost uzorka s cementno-vapnenim mortom bila je približno 2 puta veća nego kod uzorka s vapnenim mortom. Razlika u tlačnoj čvrstoći navedenog ziđa iznosila je približnih 5,7 puta, a posmičnih čvrstoća (kohezije) približnih 3,2 puta. Ista razlika maksimalne horizontalne nosivosti uočena je i kod uzoraka s punim glinenim zidnim elementima unatoč suprotnom trendu odnosa promatranih čvrstoća (1,5 i 4,5 puta). Unatoč gusto postavljenoj zidanoj ispuni uzorka O1_b, gdje je prijenos opterećenja osiguran trenjem na dodirnim plohama zidnih elemenata (kao što je prikazano slikom 10.), očekivano (znatno) povećanje horizontalne nosivosti i efektivne elastične krutosti je izostalo. Povećanje maksimalne horizontalne nosivosti iznosilo je približnih 1,25 puta, a efektivne elastične krutosti 1,2 puta u odnosu na vrijednosti određene ispitivanjem praznog okvira. Rezultati upućuju na povećanje duktilnosti uzorka za 1,3 puta u odnosu na prazan okvir, uz napomenu da uzorak nije ispitan do sloma.

Slika 10. Raspodjela deformacija unutar zidane ispune uzorka 01_b (kvantitativan prikaz deformacija, ARAMIS)

Slika 11. Utjecaj robusnosti zidnog elementa na degradaciju horizontalne nosivosti (*BS*) uzoraka skupine *O1*

S druge strane, robusnost zidnih elemenata je imala značajnu ulogu u ponašanju uzoraka nakon pojave *LS_2*. Kod svih uzoraka sa šupljim glinenim zidnim elementima, neovisno o vrsti morta i nakon pojave *LS_2*, uočena je pojava degradacije nosivosti uzoraka uslijed pojave drobljenja ispune, što je u konačnici dovelo do gubitka kompozitnog djelovanja i neovisnog ponašanja praznog okvira. Suprotno, i također neovisno o vrsti morta i nakon pojave *LS_2*, uzorci s punim glinenim zidnim elementima su zadržali približno jednaku horizontalnu nosivost (blago povećanje nosivosti). Utjecaj robusnosti zidnog elementa prikazan je slikom 11. gdje su uspoređene primarne krivulje odgovora uzoraka skupine *O1* sa šupljim i punim glinenim zidnim elementima.

S obzirom na znatne razlike u vrijednostima relativnih međukatnih pomaka pri promatranim graničnim stanjima praznih i ispunjenih okvira, horizontalne nosivosti uzoraka sa zidanom ispunom normalizirane su u odnosu na horizontalnu nosivost praznog okvira (slika 12.), u ovisnosti o skupini uzoraka. Tako je omogućena procjena doprinosa pojedinog parametra okvira i zidane ispune horizontalnoj nosivosti (i krutosti) uzoraka unutar ispitanog područja. Najveći doprinos zidane ispune uočen je u slučaju skupine uzoraka 01 i u području malih deformacija (IDR ≤ 0,5 %), gdje je kod uzoraka s jakom ispunom uočeno povećanje od približnih 5,5 puta. Kod slabe ispune, i u području malih deformacija ($IDR \le 0,15$ %), ovo povećanje je iznosilo približnih 3,8 puta. Neovisno o tipu zidane ispune (jaka ili slaba), nakon pojave LS_2 dolazi do značajne degradacije nosivosti i krutosti uzoraka, posebno kod uzoraka s ispunom izvedenom od šupljih glinenih zidnih elemenata. Uočeno ponašanje uzoraka upućuje na značajan utjecaj robusnosti zidnih elemenata na degradaciju nosivosti i krutosti, kao i na globalni odgovor uzoraka.

Kod skupine uzoraka *O3* i *O4*, također u području malih deformacija (*IDR* \leq 0,5 %), uočeno je povećanje horizontalne nosivosti od približnih 2,2 i 3 puta u odnosu na prazne okvire. Doprinos ispune izvedene od punih glinenih zidnih elemenata kod skupne uzoraka *O4* bio je manji od doprinosa ispune izvedene od šupljih glinenih zidnih elemenata, što je u suprotnosti s rezultatima ispitivanja uzoraka skupine *O1* i *O3*, i uzrokovano je nepoznatim mehanizmom.

Povećanje vrijednosti koeficijenta β (povećanje visine stupa) dovodi do smanjenja vrijednosti doprinosa ispune horizontalnoj nosivosti okvira (usporedi uzorke skupine *O1* i *O3*), dok povećanje količine uzdužne armature u stupu okvira nije dovelo do značajnih razlika zato što je odgovor uzoraka bio pod dominantnim utjecajem ispune (usporedi uzorke skupine *O3* i *O4*).

Istovjetan trend globalnog ponašanja u ovisnosti o robusnosti zidnih elemenata jadnak je za sve ispitane uzorke.

Kod svih uzoraka sa zidanom ispunom, osim u slučaju uzorka *O2_cpm*, duktilnost je približno jednaka ili nešto veća od one praznih okvira, kao što je prikazano slikama 11. i 13.

Posebna je pozornost usmjerena na uzorak *O2_cpm* zato što su primijećeni negativni utjecaji zidane ispune u slučaju nedostatne poprečne armature stupova okvira. Odgovor uzorka uspoređen je s odgovorom uzorka *O1_cpm* projektiranim s

Slika 12. Horizontalna nosivost uzoraka (BS) normalizirana u odnosu na horizontalnu nosivost praznih okvira

Slika 13. Primarne krivulje odgovora ispitanih uzoraka

minimalnom količinom poprečne armature prema [30], što je prikazano slikom 14. Oba uzorka imala su približno jednake vrijednosti horizontalne nosivosti i relativnog međukatnog pomaka pri pojavi LS_1 i LS_2. Međutim, vrijednost relativnog međukatnog pomaka pri pojavi LS_3 uzorka O2_cpm je bila znatno manja u odnosu na uzorak *O1_cpm*. Pedesetpostotno smanjenje količine poprečne armature kod uzorka O2_cpm uzrokovalo je 70-postotno smanjenje relativnog međukatnog pomaka pri LS_3. Primiječene razlike u ponašanju navedenih uzoraka, te približno jednaka duktilnost uzoraka sa zidanom ispunom i bez nje (slike 11. i 13.) pokazuju da bi minimalno potrebna količina poprečne armature, definirana Eurokodom 2 [23], mogla biti dostatna pri sprječavanju negativnih utjecaja ispune, u obliku preuranjenog posmičnog sloma stupa okvira, na horizontalnu nosivost i stabilnost. Navedeno zahtijeva dodatna eksperimentalna istraživanja u kojima bi se pokrile količine poprečne armature stupova okvira i čvrstoće ugrađenog betona i zidane ispune koje nisu u provedenom istraživanju, uz naglasak na robusnost primijenjenih zidnih elemenata.

Ispitivanje uzorka *O2_cpm* otkrilo je još nešto. Nakon posmičnog/aksijalnog sloma jednog od stupova okvira, uzorak je zadržao 75 % horizontalne nosivosti prije sloma. To se može pripisati preraspodjeli vertikalnog opterećenja, pri čemu nakon otkazivanja stupa dolazi do povećanja vertikalnog opterećenja zidane ispune, usljed čega dolazi i do povećanja posmične

nosivosti. Unatoč značajnom oštećenju zidane ispune uzorka *O2_cpm*, tijekom ispitivanja nisu zamijećene izvanravninske nestabilnosti te je on zadržao zadovoljavajuću cjelovitost, čime se pridonijelo globalnoj stabilnosti i horizontalnoj nosivosti nakon *LS_3*.

3.4. Kapacitet disipacije energije

Disipacija energije uzoraka prikazana je slikom 16. Kako bi se odredila disipacija energije po jediničnom relativnom međukatnom pomaku, histerezna energija disipirana pri svakom koraku opterećenja podijeljena je s dvostrukom vrijednošću ostavarenog relativnog međukatnog pomaka. Nakon toga, dobivene vrijednosti su normalizirane u odnosu na disipiranu energiju praznih okvira.

Disipacija energije uzoraka ovisila je o njihovim karakteristikama i postignutom relativnom međukatnom pomaku pri ispitivanju. Maksimalne vrijednosti dobivene su za iznose relativnih međukatnih pomaka koji odgovaraju pojavi *LS_2*. Doprinos zidane ispune disipaciji energije i ovdje je ovisio o vrsti morta i robusnosti zidnih elemenata. Utjecaj vrste morta na disipacijski kapacitet uzoraka skupine *O1* prikazan je na slici 16. Vidljivo je da su uzorci izvedeni od cementno-vapnenog morta posjedovali veći disipacijski kapacitet od onih izvedenih od vapnenog morta. Nakon poiave *LS_2* dolazi do degradacije disipacije energije.

Slika 15. Histerezna krivulja odgovora uzorka 02_cpm

Slika 16. Disipacija energije uzoraka prikazana po jediničnom relativnom međukatnom pomaku

koja je ovisna o robusnosti zidnih elemenata. Kod svih uzoraka kod kojih je zidana ispuna izvedena od šupljih glinenih zidnih elemenata, i nakon pojave *LS_2*, dolazi do postupnog smanjenja disipacije energije uzoraka, sve do približne vrijednosti relativnog međukatnog pomaka od 1 %, gdje ona postaje istovjetna disipacijskom kapacitetu praznog okvira. S druge strane, uzorci kod kojih je ispun izvedenih od punih glinenih zidnih elemenata zadržali su duktilan, neelastičan odgovor tijekom ispitivanja, čime je osigurana stabilnija disipacija energije nakon pojave *LS_2*.

Povećanje koeficijenta β dovelo je do smanjenja doprinosa ispune disipaciji energije, dok varijacija količine uzdužne armature u stupu (*O3* i *O4* uzorci) nije uzrokovala značajne promjene.

4. Procjena očekivanog relativnog međukatnog pomaka

Na temelju rezultata eksperimentalnih ispitivanja (poglavlje 3) učinjeni su pokušaji definiranja jednadžbi za procjenu relativnog međukatnog pomaka pri pojavi LS_1 i LS_2. Budući da su vrijednosti čvrstoća ziđa bile pod izravnim utjecajem vrste morta i robusnosti zidnih elemenata, te su čvrstoće uzrokovale jednaku postotnu promjenu vrijednosti relativnog međukatnog pomaka. Međutim, usporedno s drugim čvrstoćama, kohezija je dala najmanji korelacijski koeficijent pri linearnoj regresiji (R2 = 0,8 za LS 1 i 0,85 za LS 2). Na isti je način razmotren i utjecaj koeficijenta β . lako korelacijski koeficijenti pri linearnoj regresiji nisu bili zadovoljavajući, koeficijent β je uzet u obzir zbog očitog utjecaja. Predlažu se dvije jednadžbe: (1) za relativni međukatni pomak pri LS_1 i (2) za relativni međukatni pomak pri LS 2. Usporedba eksperimentalnih rezultata s rezultatima predloženih izraza prikazana je na slici 17.a i 17.b. Predloženi izrazi zadovoljavajuće procjenjuju promatrane veličine, uz trend precjenjivanja vrijednosti kod uzoraka sa šupljim i podcjenjivanja kod uzoraka s punim glinenim zidnim elementima. Najveća pogreška pri procjeni relativnog međukatnog pomaka pri pojavi LS 1 dobivena je za uzorak O1 bvm i iznosi -20,7 %. Pri pojavi LS_2, najveća pogreška je dobivena kod uzorka O3_cpm i iznosi 22,6 %. Pogreške kod ostalih uzoraka, za oba granična stanja, manje su od ± 16 %.

Predloženi izrazi nemaju fizikalno značenje i definirani su isključivo na provedenom istraživanju. Ti izrazi trebaju biti provjereni i za druge vrijednosti kohezije f_{vo} i koeficijenta β od onih pokrivenih ispitivanjem. Dodatno, potrebno je ispitati i utjecaj geometijskog odnosa okvira unatoč oprečnim podacima iz literature, [18, 20]. Međutim, s obzirom na relativnu jednostavnost predloženih izraza, oni bi mogli naći primjenu kod uobičajenih vrsta zidanih ispuna, kao što je i bio slučaj u ovom istraživanju.

$$IDR_{cr} = 0.03 \cdot \beta + 0.7 \cdot f_{\mu 0}$$
 [MPa] (1)

$$IDR_{\nu} = 0.05 \cdot \beta + 1.8 \cdot f_{\nu 0}$$
 [MPa] (2)

Slika 17. Usporedba eksperimentalnih rezultata i analitičke procjene

5. Zaključak

Uradujeprikazanoispitivanječetrnaestuzorakajednorasponskih, jednoetažnih, neseizmički projektiranih (slabih) okvira pod približno konstantnim vertikalnim i ravninskim horizontalnim cikličnim opterećenjem. Uzorci su podijeljeni u četiri skupine s jednakim karakteristikama armiranobetonskih okvira i ispunjeni zidanom ispunom različitih karakteristika. Karakteristike okvira uzoraka uobičajeno su susretane u građevinskoj praksi i rezultati dobiveni ispitivanjem mogu poslužiti pri procjeni ponašanja postojećih objekata i odabiru metodologije seizmičkog ojačanja. Definirani su mehanizmi oštećenia uzoraka. Robusnost zidnih elemenata i vrsta morta proizašli su kao vodeći parametri cijelokupnog ponašanja i razine oštećenja uzoraka. Izraženo drobljenje zidane ispune izvedene od šupljih zidnih elemenata uzrokovalo je izvanravninske nestabilnosti, što je u konačnici dovelo do slobodnog deformiranja okvira (izostanak interakcije okvir-ispuna) pri vrijednostima relativnih međukatnih pomaka većih od 1 %. Zidana ispuna izvedena od punih glinenih zidnih elemenata zadržala je zadovoljavajuću cjelovitost u području provedenih ispitivanja (do vrijednosti relativnog međukatnog pomaka od približnih 1,5 %), unatoč teškom oštećenju, čime je osiguran stabilan nelinearni odgovor i disipacija energije uzoraka.

Negativni utjecaji zidane ispune primijećeni su samo kod uzorka kod kojeg je količina poprečne armature manja od minimalno potrebne količine definirane u *Eurokodu 2*. Pokazalo se da 50-postotno smanjenje količine poprečne armature uzrokuje 70-postotno smanjenje relativnog međukatnog pomaka pri slomu, upućujući na to da bi minimalna količina poprečne armature definirane u *Eurokodu 2* mogla biti dostatna za osiguranje od preuranjenog posmičnog sloma stupa okvira uzrokovanog interakcijom okvir-ispuna (zahtijeva daljnja ispitivanja!!!).

Doprinos zidane ispune ponašanju praznog okvira ovisio je o karakteristikama navedenih elemenata. Povećanje efektivne elastične krutosti praznih okvira iznosilo je od 3,8 do 9,5 puta kod uzoraka izvedenih od šupljih glinenih zidnih elemenata, te od 3,4 do 5,8 puta u slučaju uzoraka s punim glinenim zidnim elementima, ovisno o karakteristikama okvira. Nisu uočene značajne razlike u ovisnosti o ispitanim čvrstoćama zida. Doprinos zidane ispune horizontalnoj nosivosti praznih okvira ovisio je o vrsti morta, ali ne proporcionalno ispitanim čvrstoćama. Kod uzoraka s jakom zidanom ispunom, pri vrijednostima relativnog međukatnog pomaka od približnih 0,5 %, uočeno je povećanje horizontalne nosivosti od 2,2 do 5,5 puta, ovisno o karakteristikama okvira. U slučaju slabog ziđa, i pri vrijednostima relativnog međukatnog pomaka od približnih 0,15 %, povećenje horizontalne nosivosti je iznosilo 3,8 puta u odnosu na prazan okvir.

Disipacijski kapacitet uzoraka ovisio je o karakteristikama okvira i zidane ispune. Doprinos zidane ispune izvedene od krtih, šupljih glinenih zidnih elemenata, neovisno o vrsti morta, isčezava pri vrijednostima relativnog međukatnog pomaka od približnih 1 %. S druge strane, uzorci izvedeni od robusnih, punih glinenih zidnih elemenata zadržali su zadovoljavajuću cjelovitost tijekom ispitivanja, osiguravajući stabilnu disipaciju energije. Predloženi su izrazi za procjenu relativnog međukatnog pomaka pri pojavi prve značajne pukotine u ispuni i pri pojavi tečanja sustava, definirani pomoću osnovnih karakteristika okvira i zidane ispune, isključivo na temelju dobivenih rezultata ispitivanja. Usporedbom procijenjenih i eksperimentalnih vrijednosti dobivena je zadovoljavajuća podudarnost, čime je otvorena mogućnost primjene predloženih izraza kod procjene ponašanja postojećih konstrukcija, karakteristika sličnih kao i kod ispitanih uzoraka.

Zahvala

Istraživanje predstavljeno u radu dio je znanstvenoistraživačkog projekta "Uokvireno ziđe - kompozitni nosivi sustav kod armiranobetonskih zgrada" broj IP-11-2013-3013 koji financira Hrvatska zaklada za znanost. Autori zahvaljuju na potpori.

LITERATURA

- [1] EERI: 1994 Northridge Earthquake Reconnaissance Report. *Earthquake Spectra 12*, (S1, S2), 1996.
- [2] EERI, 1999 Kocaeli, Turkey Earthquake Reconnaissance Report, *Earthquake Spectra 16*, (S1), 2000.
- [3] Maidiawati, Sanada, Y.: Investigation and Analysis of Buildings Damaged during the September 2007 Sumatra, Indonesia Earthquakes. *Journal of Asian Architecture and Building Engineering*, 7 (2008) 2, pp. 371-378.
- [4] Li, B., Wang, Z., Mosalam, K.M., Xie, H.: Wenchuan Earthquake Field Reconnaissance on Reinforced Concrete Framed Buildings With and Without Masonry Infill Walls. 14WCEE, *The 14th World Conference on Earthquake Engineering*, 2008.
- [5] Kam, W. Y., Pampanin, S., Elwood, K.: Seismic Performance of Reinforced Concrete Buildings in the 22 February Christchurch (Lyttelton) Earthquake, *Bulletin of the New Zealand Society for Earthquake Engineering*, 44 (2011) 4, pp. 239–278.
- [6] Bell, D. K., Davidson, B. J.: Evaluation of Earthquake Risk Buildings with Masonry Infill Panels, *NZSEE 2001*. Conference, Paper No.4.02.01. 2001.
- [7] Anagnos, T., Comerio, M.C., Goulet, C., Steele, J., Stewart J.P.: Development of a Concrete Building Inventory: Los Angeles Case Study for the Analysis of Collapse Risk, *Proceedings of 9th National* & 10th Canadian Conference on Earthquake Engineering, 2010.
- [7] Vintzileou, E., Zeris, C., Repapis, C.: Seismic Behaviour of Existing RCBuildings, 13th World Conference on Earthquake Engineering, Paper No.2453, 2004.
- [9] Liel, A.B., Haselton, C.B., Deierlein, G.G.: Seismic Collapse Safety of Reinforced Concrete Buildings. 2: Comparative Assessment of Nonductile and Ductile Moment Frames, *Journal of Structural Engineering*, 135 (2011) 4, pp. 492-502.
- [10] Masi, A.: Seismic Vulnerability Assessment of Gravity Load Designed R/C Frames. *Bulletin of Earthquake Engineering*, 1 (2003), pp. 371-395, http://dx.doi.org/10.1023/B:BEEE.0000021426.31223.60
- [11] Hoffmann, G.W., Kunnath, S.K., Reinhorn, A.M., Mander, J.B.: Gravity-Load-Designed Reinforced Buildings: Seismic Evaluation of Existing Construction and Detailing Strategies for Improved Seismic Resistance. *Technical Report NCEER-92-0016*, 1992.

- [12] Jeon, J.S., Lowes, L.N., DesRoches, R., Brilakis I.: Fragility curves for non-ductile reinforced concrete frames that exhibit different response mechanisms, *Engineering Structures*, 15 (2015), pp. 127-143, http://dx.doi.org/10.1016/j.engstruct.2014.12.009
- [13] Fiorato, A.E., Sozen, M.A., Gamble, W.L.: An Investigation of the Interaction of Reinforced Concrete Frames with Masonry Filler Walls. *Technical Report UILU-ENG 70-100*, University of Illinois at Urbana-Champaign, 1970.
- [14] Mehrabi, A.B., Shing, P.B., Schuller, M. P., Nolan, J. L.: Performance of masonry-infilled R/C frames under in-plane lateral loads. *Report No. CU/SR-94/6*, University of Colorado at Boulder, 1994.
- [15] Buonopane, S.G., White, R.N.: Pseudodynamic Testing of Masonry Infilled Reinforced Concrete Frame. *Journal of Structural Engineering*, 125 (1999) 6, pp. 578-589.
- [16] Al-Chaar, G., Issa, M., Sweeney, S.: Behavior of Masonry-Infilled Nonductile Reinforced Concrete Frames. *Journal of Structural Engineering*, 128 (2002) 8, 1055-1063, 2002.
- [17] Colangelo, F.: Experimental Evaluation of Member-by-Member Models and Damage Indices for Infilled Frames. *Journal of Earthquake Engineering*, 7 (1), pp. 25-50, http://dx.doi. org/10.1080/13632460309350440
- [18] Colangelo, F.: Pseudo-dynamic seismic response of reinforced concrete frames infilled with non-structural brick masonry. *Earthquake Engineering and Structural Dynamics*, 34 (2005), pp. 1219-1241, http://dx.doi.org/10.1002/eqe.477
- [19] Centeno, J., Ventura, C. E., Foo, S.: In-plane Shake Table Testing of Gravity Load Designed Reinforced Concrete Frames with Unreinforced Masonry Infill Walls. *Proceedings of 14th World Conference on Earthquake Engineering*, 2008.
- [20] Stavridis, A.: Analytical and Experimental Study on Seismic Performance of Reinforced Concrete Frames Infilled with Masonry Walls. *Doctoral Dissertation*, University of California at San Diego, 2009.
- [21] Pujol, S., Fick, D.: The test of a full-scale three-storey RC structure with masonry infill walls. *Engineering Structures*, 32 (2010) 10, pp. 3112-3121.
- [22] CEN, Eurocode 8 Design of Structures for Earthquake Resistance. Part 3: Assessment and Retrofitting of Buildings, Brussels, 2004.

- [23] CEN, Eurocode 2 Design of Concrete Structures. Part 1-1: General Rules and Rules for Buildings, Brussels, 2004.
- [24] Harris, H.G., Sabnis G. M.: Structural Modeling and Experimental Techniques. *CRC Press*, Boca Raton, FL. 1999., http://dx.doi. org/10.1201/9781420049589
- [25] CEN, Eurocode 6 Design of Masonry Structures. Part 1-1: General Rules for Reinforced and Unreinforced Masonry, Brussels, 2005.
- [26] Dakudze, A.: Behaviour of Reinforced Concrete Frames Infilled with Brick Masonry Panels. *Doctoral Dissertation*, The University of New Brunswick, 2000.
- [27] CEN, EN 12504 Testing Concrete in Structures. Part 1: Cored Specimens – Taking, Examining and Testing in Compression, Brussels, 2000.
- [28] International standard ISO 6892 1: Metallic Materials Tensile Testing. Part 1: Method of Test at Room Temperature, Geneva, 2009.

- [29] Tomičić, I.: Betonske konstrukcije, *DHGK*, Zagreb, 1996.
- [30] Penava, D., Radić, I., Gazić, G., Sigmund, V.: Mechanical Properties of Masonry as Required for the Seismic Resistance Verification. *Technical Gazette*, 18 (2011) 2, pp. 273–280.
- [31] Haldar, P., Singh, Y., Paul, D. K.: Identification of Seismic Failure Modes of URM Infilled RC Frame Buildings. *Engineering Failure Analysis*, 33 (2013), pp. 97-118, http://dx.doi.org/10.1016/j. engfailanal.2013.04.017
- [32] Kalman-Šipoš, T., Sigmund, V., Hadzima-Nyarko, M.: Earthquake Performance of Infilled Frames Using Neural Networks and Experimental Database. *Engineering Structures*, 51 (2013), pp. 113-127.
- [33] Zovkic, J., Sigmund, V., Guljaš, I.: Cyclic Testing of a Single Bay Reinforced Concrete Frames With Various Types of Masonry Infill. *Earthquake Engineering and Structural Dynamics*, 42 (2013) 8, pp. 1131-1149.